

GeoServer Beginner's Guide

Share and edit geospatial data with this open source
software server

Stefano Iacovella

Brian Youngblood

BIRMINGHAM - MUMBAI

GeoServer Beginner's Guide

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2013

Production Reference: 1110213

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-668-6

www.packtpub.com

Cover Image by Brian Youngblood (brian@brianyoungblood.com)

Credits

Authors
Stefano Iacovella

Brian Youngblood

Reviewers
Pablo Rodríguez Bustamante

Daniela Cristiana DOCAN

Brett Gaines

Eric-Jan Groen

Antonio Santiago

Acquisition Editor
Usha Iyer

Lead Technical Editor
Dayan Hyames

Technical Editor
Jalasha D'costa

Copy Editors
Aditya Nair

Laxmi Subramanian

Ruta Waghmare

Project Coordinator
Amey Sawant

Proofreader
Aaron Nash

Indexer
Hemangini Bari

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

About the Authors

Stefano Iacovella is a long-time GIS developer and consultant living in Rome, Italy. He also
works as a GIS course instructor.

He has a Ph.D in Geology. Being a very curious person, he has developed a deep knowledge
of IT technologies, mainly focused on GIS Software and related standards.

Starting his career as an ESRI employee, he was exposed to and became confident with
proprietary GIS Software, mainly the ESRI suite of products.

For the last 10 years, he has been involved with open source software and also the task of
integrating it with commercial software. He loves the open source approach, and really trusts
in the collaboration and sharing of knowledge. He strongly believes in the concept of open
source, and constantly strives to spread it, and not only in the GIS sector.

He has been using GeoServer since the release of Version 1.5; configuring, deploying, and
hacking it in several projects. Some of the other GFOSS projects he mainly uses and likes are
GDAL/OGR libraries, PostGIS, QGIS, and OpenLayers.

When not playing with maps and geometric shapes, he loves reading about science, mainly
physics and math, riding his bike, and having fun with his wife and his two daughters, Alice
and Luisa.

I would like to thank many people who have helped me to make this book
a reality.

A special mention for GeoServer's developers; they are the wonderful
engine without which this book would not exist.

I would like to thank Usha Iyer, Dayan Hyames, Amey Sawant, and everyone
else at Packt Publishing for all their hard work to get this book published.

My gratitude to Luca Morandini, a colleague and friend; he spurred me to
take this challenge.

Last but not the least, I want to express my gratitude to Alessandra, Alice,
and Luisa for their support and patience.

Brian Youngblood is a open source developer living in Montgomery, AL with more than
a decade of experience developing, integrating, and managing high traffic websites.

Brian was the Online Operations Manager and Technical Lead at the Southern Poverty
Law Center for over 12 years. The SPLC is a nationally recognized nonprofit, and its
websites SPLCenter.org and Tolerance.org have continued to get sharp increases in
visitors year-on-year, resulting in growth in its online operations with open source.
The SPLC won two Webby Awards in 2002 and 2004.

Brian was also the founding partner and Chief Technology Officer for IntelliTours, a
GPS-guided multimedia tour. He worked with several companies developing hardware and
software including Alcorn McBride, Volkswagen, and Garmin. His work explored San Diego,
Santa Cruz, Hawaii, and miles and miles of I-95 on the East Coast. Most notably, his work was
featured on the cover of Entertainment Engineering magazine, Martha Stewart radio, the LA
Times, and NPR.

Embracing the spirit of other open source communities such as Drupal, and a combined
passion for scalable GIS solutions, led him to adopt GeoServer for rapidly changing geospatial
data stores.

You can contact him at brian@brianyoungblood.com or follow him on twitter
@brianyoungblood.

The GeoServer developers and community. So many have contributed
to bringing this software to this point. Specifically, Andrea Aime, Chris
Holmes, Gabrel Roldan, and David Winslow have fielded my questions
on GeoServer's mailing list and in IRC. Their tireless commitment to the
GeoServer project has helped me and so many others immensely.

Other contributors are also listed on the contributors page at
http://geoserver.org/display/GEOS/Contributors.

Thank you Melissa Henninger for helping edit and proof chapters.
To Bill Fitzgerald for his advice as a Packt author.

About the Reviewers

Pablo Rodríguez Bustamante is a geographer and an Environment and Geographic
Information Systems (GIS) Consultant with experience in the field of water resource
planning and natural hazards.

He has 4 years' experience in the field of GIT (Geographic Information Technologies) and
thematic mapping, 3 years' experience in environmental consulting, and 2 years' experience
in water planning issues and natural hazards.

He is a GIS specialist. He has expertise in EIA and Urban and Regional Planning.

He is fluent in Spanish, English, and Italian.

GEOCyL Environmental and Territorial Consultancy

GEOCyL is an environmental and territorial consultancy specializing in environmental studies,
risk management, GIS development, land management, urban planning, geomarketing, and
spreading knowledge about nature and our environment.

Our company optimizes various territorial areas in different sectors. For that, we use the
newest technologies in geographical science concerning environmental and territorial issues.
On the basis of GIS, we provide specific and optimized solutions for public authorities and/or
private companies.

R&D lines (lines of research)

 � Research referring to the management of natural hazards, which include drawing
up of maps of risk, danger, and vulnerability through particular methodologies
of risk analysis; technological advice and help concerning territorial planning and
development of endangered areas to prevent or reduce the effect of natural hazards
in order to protect the civilian population; and management of emergency bodies.

 � Implementation of the GBI system (Geographic Business Intelligence) for
greater profitability

 � Analysis and optimization of geographical information and solutions.

I would like to thank my family and my GEOCyL partners (Eduardo Bustillo,
Florian Schilling, …), who always supported me, even in difficult times.
Special thanks to my girlfriend Patricia and my friends.

Daniela Cristiana DOCAN is a lecturer at Technical University of Civil Engineering,
Bucharest, Romania. She works within the Faculty of Geodesy, mainly in GIS and
survey engineering.

Formerly, she worked for ESRI Romania and ANCPI (National Agency of Cadastre and
Land Registration).

She obtained her Ph.D in 2009 in Civil Engineering, with the thesis "Contributions to quality
improvement of spatial data in GIS".

While working for ESRI Romania, she has trained (as an authorized Instructor in ArcGIS by
Environmental Systems Research Institute, Inc. (ESRI), Redlands, California, USA) teams from
different states and privately owned companies. Also, she has created and administrated
databases (geodatabase format) for different domains of activity.

For ANCPI (National Agency of Cadastre and Land Registration), in 2009 she created
(for the first time in the field) a logical and physical datamodel for the National Topographic
Data set on a large scale (TOPRO5). She was a member of different workgroups who
elaborated the standards and technical specifications and the country report, in 2010
for INSPIRE (Infrastructure for Spatial Information in the European Community).

Brett Gaines is a GIS programmer and remote sensing analyst. He holds a B.S. degree in
Geography with a specialization in GIS, along with a M.Sc. degree in GIS.

He stays on the leading edge of GIS and database technologies, and he is always eager
to learn new things. He prefers challenging projects and solving tough geospatial
intelligence problems.

Eric-Jan Groen is a Linux Professional from the Netherlands. Formerly, he worked at
Automotive Navigation Data.

I would like to thank everyone who helped create this book in any way.

Antonio Santiago is a computer science professional with a keen interest in the subject.
He is an extremely curious Software Engineer who loves programming and learning
new things.

GIS is his preferred area of interest, mainly because of the amount of things it encloses:
databases with spatial capabilities, servers, protocols and standards, desktop and web
development, and scalability.

After working with different technologies, such as C, Perl, and PHP, he found his preferred
language, Java.

In 2004, while on a weather radar project with the IDL language (Interactive Data Language),
he started working with OGC standards and GeoTools/GeoServer projects.

Nowadays, he is more focused on the JavaScript language because of the great performance
implementation of current browsers and the growing adoption of the HTML5 specification.

He has authored the book OpenLayers Cookbook, by Packt Publishing.

To my partner, Pilar, for understanding my passion for computers, and to
my parents for igniting in me the spark to see the beauty of learning.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here,
you can access, read and search across Packt's entire library of books.

Why Subscribe?
 � Fully searchable across every book published by Packt
 � Copy and paste, print and bookmark content

 � On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today
and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on Twitter,
or the Packt Enterprise Facebook page.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

I would like to express all my gratitude, affecttion, and professional respect to
Ruggero Faggioni.

He was a colleague and a friend. He helped me discover my skills; he gave me the
opportunity to grow as a GIS consultant. In the years we worked together, he was
not only a boss, but also a kind tutor, and he taught me a lot.

I would like to dedicate this book to Ruggero, unfortunately he isn't there anymore
to read it, but I am sure he would have liked it.

Stefano Iacovella

I would like to thank Jon Fisher from Auburn University Montgomery who
ultimately led me to pursue a career in the Information Technology field. His
patience, mentoring, and willingness to share his knowledge planted the seed that
continues to grow today.

To Jim Carrier, the founder and my partner at IntelliTours for sharing the passion to
explore the world around us through the use of GPS, story-telling, and writing.

My grandmother, mom, dad, brother, sister-in-law, and two nephews. They have
seen my highs and lows during the process of writing this book and provided
encouragement when I needed it most.

Also, it would be remiss if I didn't mention my dog Cooper, who has never been too
far from me and my keyboard as I have written this book over many long nights
and weekends.

Brian Youngblood

Table of Contents
Preface 1
Chapter 1: GIS Fundamentals 7

What is GIS about? 7
The foundation of any GIS – spatial data 8

Measuring the world 9
Projecting a sphere on a plane 10

Understanding coordinate systems 12
Commonly used coordinate systems 12

Universal Transverse Mercator system 12
Web Mercator 13

Spatial Reference Identifier (SRID) 13
Representing geometrical shapes 14
Modeling the real world with raster data 16
Representing the world 17
Time for action – exploring OpenStreetMap 20
Adding more colors to your maps 23

Choropleth maps 23
Proportional maps 25

Time for action – making your thematic map 26
Summary 29

Chapter 2: Getting Started with GeoServer 31
Installing Java 32
Time for action – checking the presence of Java on Windows 32
Time for action – checking the presence of Java on Ubuntu 34
Time for action – installing JRE on Windows 35
Time for action – installing JRE on Ubuntu 36
Installing Apache Tomcat 38
Time for action – installing Apache Tomcat on Windows 38

Table of Contents

[ii]

Time for action – installing Apache Tomcat on Ubuntu 42
Time for action – configuring Tomcat as a service on Ubuntu 45
Installing GeoServer 48
Time for action – deploying GeoServer on Tomcat 49
Implementing basic security 51
Time for action – improving security settings 52
Summary 53

Chapter 3: Exploring the Administrative Interface 55
Understanding the interface 55
About & Status 57

Server Status 57
Locks 58
Connections 58
Memory Usage 58
JVM Version and fonts 58
JAI usage and configurations 58
Update Sequence 58
Resource Cache 59
Configuration and catalog 59

GeoServer Logs 59
Contact Information 59
About 60

Time for action – manually reloading configuration 60
Data 61

Layer Preview 61
Time for action – OpenLayers preview 62
Time for action – KML preview 63

Workspaces 64
Time for action – creating a workspace 65

Stores 66
Layers 68
Layer groups 69
Styles 69

Services 70
WMS 71

Time for action – limiting the SRS list from WMS 71
WFS 73
WCS 73

Settings 73
Global 73

Verbose Reporting 73
Enable Global Services 74

Table of Contents

[iii]

Proxy Base URL 74
Logging Profile 74
Log to StdOut 74
Log location 74

Time for action – changing your logging configuration 74
JAI 75

Tile Caching 76
Security 76

Settings 77
Users, Groups, and Roles 77
Data 78

Catalog security 78
Services security 79

Demos 79
Time for action – exploring Demo requests 80

SRS List 83
Time for action – filtering the projection list 83
Summary 85

Chapter 4: Accessing Layers 87
Layer types 88
OpenLayers 88
Time for action – exploring OpenLayers options 89

Working with tiles 90
Exploring the Web Map Service output formats 92

AtomPub 92
GIF 92
GeoRSS 93
JPEG 94
KML (Plain) 94
KMZ (Compressed) 94
PDF 95
PNG 95
SVG 95
TIFF 95

Web Feature Service 96
CSV 96
GML (plain text) 96
GML2 (compressed GZIP) 97
GeoJSON 97

Time for action – parsing GeoJSON 97
Shapefile 98

Table of Contents

[iv]

Extra output options 98
GDAL and OGR output 99
TEXT/HTML 99

Time for action – using the GetFeatureInfo freemarker template 99
Using WMS Reflector 101
Time for action – using WMS Reflector 102
Summary 103

Chapter 5: Adding Your Data 105
Configuring your data 105
Configuring vector data sources 106

Adding a properties file 106
Configuring an external Web Feature Service 107
Adding shapefiles 107

Time for action – adding shapefiles 107
Using PostGIS 110

Time for action – installing PostgreSQL and PostGIS 110
Time for action – loading data in PostGIS and publishing them in GeoServer 116
Configuring raster data sources 120

ArcGrid 120
GeoTiff 120
Gtopo30 121
ImageMosaic 121
WorldImage 121
Configuring an external Web Map Service 121

Exploring additional data sources 122
Using Oracle 122

Time for action – adding Oracle support in GeoServer 122
Using MySQL 123

Time for action – adding MySQL data source 124
Summary 126

Chapter 6: Styling Your Layers 127
Understanding Styled Layer Descriptor 127
Editing styles 128
Exploring the standard structure of a style 129
Time for action – viewing GeoServer bundled styles 130
Loading data for styling 133
Working with point symbols 134
Time for action – creating a simple point style 134
Time for action – adding a stroke value 137

Table of Contents

[v]

Time for action – dealing with angles and transparency 140
Time for action – composing simple shapes 141
Time for action – using external graphics 144
Linestring symbols 146
Time for action – creating a simple line style 146
Time for action – adding a border and a centerline 148
Time for action – using hatching 149
Time for action – using dashed lines 151
Time for action – mixing dashing lines and markers 153
Working with polygon symbols 155
Time for action – creating a simple polygon style 155
Time for action – using a graphic filling 157
Time for action – using hatching with polygons 158
Adding labels 160
Time for action – labeling points 161
Time for action – labeling lines 163
Time for action – labeling polygons 166
Thematic mapping 168
Time for action – classifying roads 169
Setting visibility 173
Time for action – enhancing thematic roads map 173
Putting it all together 175
Time for action – grouping layers 176
Summary 178

Chapter 7: Creating Simple Maps 179
Exploring Google Maps API 180
Time for action – adding a GeoServer layer as overlay 180
Time for action – adding a GeoServer layer as a base layer 185

Using pre-calculated maps 187
Time for action – adding a GeoServer cached layer as overlay 187
Time for action – customizing Google basemap 189

Interacting with the user 193
Time for action – intercepting the Click event 193
Using OpenLayers 196
Time for action – integrating GeoServer and OpenLayers 196
Time for action – using GeoRSS with OpenLayers 199
Exploring Leaflet 201
Time for action – using Leaflet with GeoServer layers 201
Summary 203

Table of Contents

[vi]

Chapter 8: Performance and Caching 205
Exploring GeoWebCache 206
Time for action – configuring GeoWebCache storage 206
Time for action – configuring Disk Quota 209
Setting caching defaults 212

Direct integration 212
WMS-C 212
TMS and WMTS 213
Default layers options 213
Default Cached Gridsets 214

Configuring gridsets 215
Time for action – creating a custom gridset 215
Configuring tile layers 218
Time for action – configuring layers and layer groups for caching 219
Time for action – using tiles with OpenLayers 221
Time for action – seeding a layer 227
Using an external GeoWebCache 231
Summary 233

Chapter 9: Automating Tasks: GeoServer REST Interface 235
Introducing REST 236
Using REST 236
Time for action – installing the Requests library 237
Managing data 238

Working with workspaces and namespaces 238
Time for action – managing workspaces 239

Using data stores 246
Time for action – managing data stores 246

Using feature types 252
Time for action – adding a new shapefile 254
Time for action – adding a PostGIS table 256
Publishing data 260

Working with styles 260
Time for action – adding a new style 260

Working with layers 261
Time for action – managing layers 262
Summary 265

Table of Contents

[vii]

Chapter 10: Securing GeoServer Before Production 267
Basic security settings 268
Time for action – enabling strong encryption 269
Time for action – changing the master password 270
Defining users, groups, and roles 271

User definition 272
Group definition 272
User/group services 272
Roles definition 272

Time for action – creating users and groups 272
Time for action – defining roles 276
Accessing data and services 277
Time for action – securing layers 278
Summary 284

Chapter 11: Tuning GeoServer in a Production Environment 285
Tuning Java 286
Time for action – configuring Java runtime parameters 286
Time for action – installing native JAI 288
Removing unused services 291
Time for action – disabling unused services 291
Setting a proxy 292
Time for action – configuring a proxy 293
Avoiding service faults 295
Time for action – configuring a cluster 297
Summary 303

Chapter 12: Going Further: Getting Help and Troubleshooting 305
Going beyond maps 305

Delivering vector data 306
Time for action – retrieving vector data 306

Delivering raster data 310
Time for action – retrieving raster data 310
Getting help 312
Summary 314

Appendix: Pop Quiz Answers 315
Index 319

Preface
Nowadays, web mapping is all over the Internet. User friendly-interfaces and efficiency are
mandatory requirements for GIS, as for any other system. If you are going to start a new
web mapping application, you will not start from scratch. GeoServer is one of the biggest
players in the web mapping field. It has a solid developer community and a high maturity
level. Although it's not an easy piece of software to master, the latest releases have greatly
improved stability and ease of management.

GeoServer Beginner's Guide offers you a practical introduction to GeoServer. Beginning with
the installation and basic usage, you will learn to use the administration interface for adding
data, configuring layers, customizing OGC services, and securing your site. You will find
included lots of step-by-step examples, covering topics from data store configuration to layer
publication and style customization. If all this sounds new and strange to you, don't worry;
GeoServer Beginner's Guide will introduce you to the fundamentals of GIS and will then
clearly explain all the basic tasks performed in order to build maps.

This book is meant to expand your knowledge of web mapping from something you have
either heard of or have practised a little, into something you can apply at any level to meet
your needs in incorporate maps for a site. I hope you will enjoy reading this book as much as
I did writing it.

What this book covers
Chapter 1, GIS Fundamentals, introduces you to GIS concepts. It guides you through spatial
data types and maps. You will discover how spatial information is stored and how to set up a
map. You may want to skip this chapter if you already have a solid background in GIS.

Chapter 2, Getting Started with GeoServer, guides you in setting up your first GeoServer
instance. It shows you, step by step, how to download the most recent version of the
software and its requirements, that is, JAVA and a servlet container. For each component,
a detailed description about how to install it is included.

Preface

[2]

Chapter 3, Exploring the Administrative Interface, covers GeoServer's web administration
interface. It explains how to log in and access each section. You will familiarize yourself with
data configuration following a common workflow that starts by adding data to GeoServer
and guides you through to publication. Included in this chapter are screen captures that
define the main areas of the program and menu items—all of which is very helpful when
accessing the interface for the first time.

Chapter 4, Accessing Layers, guides you through data publication. The chapter covers in
detail all output types offered by GeoServer for your data. Raster formats such as JPEG
and PNG are discussed for maps, while vector formats such as GeoRSS and GEOJSON are
explained for vector output. We will also explore OpenLayers, a JavaScript framework that
GeoServer includes in its output format, when you want to serve your data as
an application.

Chapter 5, Adding Your Data, demonstrates how you can configure data in GeoServer. The
examples included will show you how to add and publish shapefiles and PostGIS tables,
two of the most common formats, which are also natively supported by GeoServer. The
extensions for Oracle and MySQL are also discussed.

Chapter 6, Styling Your Layers, explains how to apply styles to your layers. Styles let you
render your data according to attributes, in order to build pretty maps. SLD's syntax,
the standard for data rendering, will be explained in detail, with examples for different
geometry types such as point, polyline, and polygons. The chapter also illustrates how to
build scale-dependent symbology and how to compose different rendering in a group, to
mimic a map in WMS.

Chapter 7, Building a Simple Map for Your Site Using OpenLayers, Google Maps, and Your
Geospatial Data, describes how to build client applications with the JavaScript framework.
JavaScript is a powerful and widespread language and, unsurprisingly, it is one of the best
choices when developing a web application. We will build some sample maps using Google
Maps API, OpenLayers, and Leaflet.

Chapter 8, Performance and Caching, covers the use of integrated GeoWebCache. Caching
maps is a common strategy with map servers; it allows you to serve pretty complex maps
without running out of resources. The GeoServer 2.2 release introduces a great change:
you can fully administer the integrated GeoWebCache from the web admin interface.
In the examples included, you will configure cache with different strategies, optimizing
performance, or disk usage.

Chapter 9, Automating Tasks: GeoServer REST Interface, explains how to control the
GeoServer configuration from a remote location through the REST interface. This may prove
a great help if you have to administer a GeoServer site without the possibility of using the
web admin interface, or if you want to automatize, in an external procedure, some admin
tasks. The included examples will let you add data, configure styles and layers, and publish
them. All the operations are demonstrated with Python and cURL syntaxes.

Preface

[3]

Chapter 10, Securing GeoServer Before Production, covers the GeoServer security module.
The chapter first discusses general configuration for security, that is, password encryption,
and then the security model is explained. A case history shows you how to create a
configuration where different users are in charge of administration, editing, and
publication tasks.

Chapter 11, Tuning GeoServer in a Production Environment, explains the advanced
considerations for running a successful GeoServer site. It covers Java Runtime tuning and
data and services optimization. Finally, a high availability configuration is detailed, with
instructions for configuring a balanced GeoServer installation.

Chapter 12, Going Further: Getting Help and Troubleshooting, shows you how to access
community tools and help for going further than what you will learn from this book. It also
covers a concise introduction to other data publication standards implemented in GeoServer,
WCS, and WFS. With WCS and WFS, you can serve vector and raster data to clients that not
only need to show a map but have to perform some processing on the data.

What you need for this book
Installation and download instructions are described for all the software packages you will
need. You just need to have access to a computer with an online connection for downloading
packages. The instructions cover both Linux and Windows operating systems, so you may
select the one you prefer.

All the software used in this book is freely available, most of the time as an open source
project. Hardware requirements for development purposes are not very high. A relatively
modern laptop or desktop will be enough for running examples. Source code and data used
in this book are freely available on the Packt Publishing site.

Who this book is for
If you are going to use maps on your site, incorporate spatial data in a desktop application,
or you are just curious about web mapping, this book offers you a fast-paced and
practical introduction.

Particularly if you need to develop a web application supporting maps, you will find that
GeoServer is one of the best solutions you can choose.

Analysts will discover how GIS works and how it can be integrated in complex systems.
System administrators may also find this book useful for planning installation, tuning,
and maintenance.

Preface

[4]

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action – heading
1. Action 1

2. Action 2

3. Action 3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz – heading
These are short multiple-choice questions intended to help you test your own understanding.

Have a go hero – heading
These practical challenges and give you ideas for experimenting with what you have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Get the 6686_05_mysql_usacounties.sql.
zip file and unzip it. Create a new database in MySQL. Call it geoserver."

A block of code is set as follows:

_=id:Integer,code:String,name:String,country:Geometry:srid=4326
places.1=1|Rome|Italy|POINT(12.492 41.890)
places.2=2|Grand Canyon|Usa|POINT(-112.122 36.055)
places.3=3|Paris|France|POINT(2.294 48.858)
places.4=4|Iguazu National Park|Argentina|POINT(-54.442 -25.688)
places.5=5|Ayers Rock|Australia|POINT(131.036 -25.345)

Preface

[5]

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Start Tomcat service and
then log in to the GeoServer administration interface. Go to the Data | Stores section and
click on Add new store. You can now see some new options. Select MySQL".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

http://www.packtpub.com
http://www.packtpub.com/support

Preface

[6]

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from http://www.packtpub.com/sites/default/files/
downloads/6686OS_Graphics.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded to our website, or added to any list of existing errata, under the Errata
section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

1
GIS Fundamentals

In this chapter, you will learn the foundation of geographical information
system and spatial data. Although you do not need to understand these
subjects in great depth to take advantage of the features of GeoServer, we will
give you the basic information required to understand what you will be doing in
the book. You will be introduced to the magic of spatial.

We are going to cover the following topics:

 � Why is spatial data special?
 � Spatial data formats.
 � The magical world of Spatial Reference System (SRS): getting a sphere on a plane.
 � What is a map and why does it matter?
 � The art of Cartography. Building map types such as Choropleth and

Proportional Symbol.

By the end of the chapter, you will have the basic skills to identify which spatial data format
best suits your needs.

What is GIS about?
Since you were a kid at school you have been exposed to a lot of maps. Maps of countries,
where you spent hours memorizing the boundaries, rivers, and capitals; historical maps,
with the rise and fall of ancient empires, where you dreamed of being a great conqueror;
economics maps, with the locations and amounts of goods and services. Every day on
newspapers, on TV, or in a far more accurate presentation, in books and academic papers
you look at data represented on a map. Maps are a spatial representation of data and are
often the main output of a GIS.

GIS Fundamentals

[8]

GIS is an acronym for Geographical Information System. Does it sounds too complicated to
you? Don't be afraid; it is not so different from many other systems for managing information
you probably already know. The main difference is in the spatial piece of information.
All the data contained in a GIS has a spatial dimension or a link to another object with
spatial attributes.

So what is GIS? In a nutshell, we can define it as a system to acquire and store data, to
process data, and to produce data representations, that is, maps. In this book you will learn
that working with GeoServer requires you to prepare your data, process it to render in a
beautiful map, and build up a set of functions that enable a user to interact with your data.
So building up a GeoServer instance may be described as GIS-building.

A detailed comprehension of GIS is far beyond the scope of this book and it is not required
for starting with GeoServer. But you need to have some basic skills in spatial data, maps, and
spatial reference systems.

Let's go; we are going to turn you into a neo-cartographer!

The foundation of any GIS – spatial data
If you have ever built a simple map to annotate your hiking on mountains or to send driving
directions to your girlfriend or boyfriend, you have dealt with spatial data.

Spatial data is the foundation of any GIS. You know that a building is likely to fall down unless
it is sitting atop a strong foundation. So you need to understand spatial data or you will be
producing poor map output.

But what is spatial data in simple words? From a general point of view you can consider
a piece of spatial information. Each description of an object contains a reference to its
position on the Earth's surface. Well, that is not a rigorous formal definition as there are
a lot of objects below and over the earth's surface, but for now we are fine with this
simplistic definition.

Think of some lists of familiar objects:

 � A list of bookshops with addresses

 � A list of places you visited during your trips

 � A list of points of interest, for example, restaurants, museums, and hotels,
you collected with your mobile phone

 � An aerial photo with a view of a city, where you can recognize notable places

Chapter 1

[9]

You can say where each element is located in a more or less precise way. They are real
objects represented with spatial data. As you may have noted, the spatial information
is represented in quite a heterogeneous way. Most people are able to recognize spatial
information in any group from the previous list. Unfortunately, GIS software and GeoServer
are an exception to this and tend to prefer a strong structured piece of information. If you
are going to use your spatial data with GeoServer, you need to organize it more accurately.
We will talk specifically about GeoServer's data connectors in Chapter 5, Adding Your Own
DataStore, but for now it is important that you understand how spatial data is commonly
organized and stored. As you keep on making maps, you will deal with lots of different
spatial data.

Measuring the world
So spatial data are references for an object's position on the earth's surface. How can you
measure and store them in a numeric format? An elementary model of the earth could be a
sphere. On a sphere's surface, you can measure positions with angular units called latitude
and longitude. Latitude (ϕ) measures the angle between the equatorial plane and a line that
passes through that point and is normal to the surface; whereas longitude (λ) measures the
angle east or west from a reference meridian (for example, that passing through Greenwich
observatory) to another meridian that passes through that point. Angular measures can be
expressed in digital degrees or in degrees, minutes, and seconds.

If you want to store the location of The Statue of Liberty, you can express it as Lat. 40° 41′
21″ N, Long. 74° 2′ 40″ W with degrees, minutes, and seconds or as 40.689167, -74.044444
using decimal degrees.

(Image from http://en.wikipedia.org/wiki/Latitude)

GIS Fundamentals

[10]

We normally think of earth as a sphere but this is not its real shape. Geodesy,
the science of studying the earth's shape, defines earth as represented by a
geoid, an ideal surface defined by the level of sea if oceans would cover the
entire earth. For practical purposes, as in projections, geoid is too complicated to
use and the earth's shape is defined by an ellipsoid. The ellipsoid is described by
its semi-major axis (equatorial radius) and flattening.

Have a go hero – move around the planet with decimal degree coordinates
Does it sound a little bit complicated? Don't be afraid and explore locations on earth with
Lat. Long. coordinates. In the following table, there are a few famous places with coordinates
in decimal degrees. Point your browser to http://maps.google.com, insert coordinates
in the search textbox, and then press Enter. Your map will be panned to the location. Google
maps enable you to query for coordinates of any place on earth; find that function and look
for some great places.

Rome, Italy 41.890, 12.492

Colorado Grand Canyon, USA 36.055, -112.122

Paris, France 48.858, 2.294

Iguazú National Park, Argentina -25.688, -54.442

Ayers Rock, Australia -25.345, 131.036

Projecting a sphere on a plane
Did you ever play with an orange peel? I did it a lot when I was a child, often pressing them
in the hope to flatten it almost perfectly. It's a hopeless challenge, but kids are stubborn and
ambitious. Many years later I found a similar analogy in a geography book. It was talking
about cartographic projection and used an orange as a model of the earth. If you think
of the orange's peel as the earth surface, it is suddenly clear why you can't have a planar
representation of the earth's surface without a great amount of distortion.

All the maps you will ever find are on a plain paper sheet. Curved digital screens are quite
uncommon in GeoGeek's nests. So how do cartographers represent a curved surface on a
plain? This is done by means of a mathematical operation called projection.

Chapter 1

[11]

Indeed, there are several different projections developed in the last few centuries by
cartographers and mathematicians. There is no mathematical method to transfer a sphere
or an ellipsoid to a two-dimensional space without distortion. Hence, projections modify the
data and include some deformations about lengths, areas, or shapes you can observe and
measure on maps.

We can classify projections according to the geographical features and properties
they preserve:

 � Conformal projections preserve angles locally. Meridian and parallels intersect at
90-degree angles.

 � Equal Area projections preserve proportions between areas. In a map with equal
area projections, each part has the same proportional area as the corresponding
part of the earth.

 � Equidistant projections maintain a scale along one or more lines, or from one or
two points to all other points on the map. Lines along which the scale (distance)
is correct, are of the same proportional length as the lines they reference on
the globe.

It is important that you understand there is no best projection; choosing one for your
map is a trade-off. According to the portion of the earth's surface, the map that you are
designing will contain and/or use the projections that suit best. Let's explore some
widely-used projections.

GIS Fundamentals

[12]

Understanding coordinate systems
You learned about the earth's shape and about projection. Coordinate systems use these
concepts to build a frame of reference to place objects on the earth's surface. There are two
types of coordinate systems: projected coordinate systems and geographic coordinate systems.

 � Geographic coordinate systems use latitude and longitude as angles measured
from the earth's centre, as we saw previously. A geographic coordinate system is
substantially defined by the ellipsoid used to model the earth, and the position of
the ellipsoid positioned relatively to the centre of the earth (called datum).

 � A projected coordinate system is defined on a flat two-dimensional surface. A
projected coordinate system is always based on a geographic coordinate system,
hence it uses an ellipsoid and a datum. Besides, a projected corporate systems
includes a projection method to project coordinates from the earth's spherical
surface onto a two-dimensional Cartesian coordinate plane.

Commonly used coordinate systems
Although there are hundreds of different projections, you can limit your knowledge to some
which are widely used.

Universal Transverse Mercator system
Commonly known as UTM, this is not really a projection. It is a system based on Transverse
Mercator projection. This projection uses a cylinder tangent to a meridian to unwarp the
earth's surface. A maximum of 5° of distortion from the central meridian is acceptable. The
UTM splits the world into a series of 6° of longitudinal wide zones. As you may guess, there
are 60 zones numbered from Long. 180W towards the east. Please note that you can't have a
map representing more than one UTM zone. Indeed, UTM is well suited for big-scale maps.

Chapter 1

[13]

Web Mercator
Web Mercator is a projection derived from Transverse Mercator. It maps ellipsoidal latitude
and longitude coordinates onto a plane using spherical Mercator equations. This projection
was popularized by Google in Google Maps and it is now widely used on online mapping
systems. It stretches areas in a north-south direction and, unlike the Transverse Mercator,
it is not conformal.

Spatial Reference Identifier (SRID)
A spatial reference system identifier is a code to easily reference a spatial reference system
(SRS). An SRS contains parameters about projection, ellipsoid, and datum. It can be defined
using the OGC's well-known text (WKT) representation. The SRS for the geographic WGS84
reference system is as follows:

GEOGCS["WGS 84",
 DATUM["WGS_1984",
 SPHEROID["WGS 84",6378137,298.257223563,
 AUTHORITY["EPSG","7030"]],
 AUTHORITY["EPSG","6326"]],
 PRIMEM["Greenwich",0,
 AUTHORITY["EPSG","8901"]],
 UNIT["degree",0.01745329251994328,
 AUTHORITY["EPSG","9122"]],
 AUTHORITY["EPSG","4326"]]

GIS Fundamentals

[14]

The last line contains the number 4326; this is the SRID uniquely identifying this SRS. The
long form should also contain the authority, that is EPSG:4326, but you will often find it
indicated only by the number.

EPSG is the acronym for European Petroleum Survey Group. It was founded
in 1986 by several European Oil companies to collect and maintain geodetic
information. In 2005, EPSG was absorbed by OGP (an international forum of
Oil and Gas producers) which formed the OGP Geomatics Committee. The
committee maintains the registry and publishes it as a public web interface
or a downloadable database.

It is very important that you know which is your data's SRID. Without it you can't represent
data on a map without the risk of great errors.

Have a go hero – explore EPSG registry
We described a couple of common and widely used SRSs, but there are a lot of them. There
are several archives on the Internet where you can find detailed information about SRSs and
their elements, that is ellipsoids, datums, unit of measurements, projected, or geographic
reference systems. One of the most authoritative and complete data sets is the EPSG
Geodetic Parameter Registry. If you are curious about it, you can open your browser and
point it to http://epsg-registry.org. Then try a simple search by inserting a location
name in the Area textbox:

Representing geometrical shapes
You learned how to calculate coordinates on the earth's surface. But how can you represent
a real object, for example, a river, in a convenient way for a GIS?

There are two main approaches when building a spatial database, modeling vector data or
raster data. Vector data uses a set of discrete locations to build basic geometrical shapes,
such as points, polylines, and polygons.

Chapter 1

[15]

Of course real objects are neither a point, nor a polyline or a polygon. In your model you
have to decide which basic shape better suits the real object. For example, a town can
be represented as a point if you are going to draw a map of the world with the countries'
capitals shown. On the other hand, if you are going to publish a counties map, a polygon
will enable you to draw the city boundaries to give a more realistic representation.

The simpler geometric object is a point. Points are defined as single coordinate pairs (x,y)
when we work in two-dimensional space or coordinate triplets (x,y,z) if you want to take
account of the eight coordinates. In the following examples, we use point features to store
the location of active volcanoes:

Etna; 37.763; 14.993
Krakatoa; -6.102; 105.423
Aconcagua; -32.653; -70.011
Kilimanjaro; -3.065; 37.358

Did you guess the units and projections used? The coordinates are in decimal degrees and
SRS is WGS84 geographic, that is EPSG:4326.

Points are simple to understand but don't give you many details about the spatial extent of
an object. If you want to store rivers you need more than a coordinate pair. Indeed, you have
to memorize an array of coordinate pairs for each feature in a structure called polyline:

Colorado; (40.472 -105.826, … , 31.901 -114.951)
Nile; (-2.282 29.331, … , 30.167 31.101)
Danube; (48.096 8.155, … ,45.218 29.761)

GIS Fundamentals

[16]

If you need to model an areal feature such as an island, you can extend the polyline object
adding the constraint that it must be closed; that is the first and the last coordinate pairs
must be coincident:

Ellis Island; (-74.043 40.699, -74.041 40.700, -74.040 40.700, -74.040
40.701, -74.037 40.699, -74.038 40.699, -74.038 40.698, -74.039
40.698, -74.041 40.700, -74.042 40.699, -74.040 40.698, -74.042
40.696, -74.044 40.698, -74.043 40.699)

The feature model used in GIS is a little bit more complex than what we have
discussed. There are some more constraints regarding vertex ordering, line
intersections, and areal shapes with holes. Different GIS specified several
different set of rules, often in proprietary formats. Open Geospatial Consortium
(OGC) defined a standard for simple features, and lately most systems, open
source in primis, are compliant with it. If you are curious about it, you can point
your browser at http://www.opengeospatial.org/standards/is
and look for The OpenGIS® Simple Features Interface Standard.

Modeling the real world with raster data
Raster data uses a regular tessellation, defining cells where one or more values are uniform.
Usually the cells are square, although this is not a constraint. Raster data is generally used
to represent value continuously changing in the space, that is, a field. You can use a regular
tessellation to build a digital elevation model of the earth's surface. In the following figure,
each cell has a height and width of 20 meters and the value stored is the height over the sea
level in meters:

Chapter 1

[17]

Can you use raster data to model real features like a river? Yes, you can, but there are some
drawbacks you have to consider. The following figure shows a linear feature represented
as vector data (the red line) and as raster data (the black and white cells). If your purpose
is drawing the shapes on a map, raster data is not a good choice as raster graphics are
resolution-dependent. They cannot scale up to an arbitrary resolution without the
apparent loss of quality.

Representing the world
In the previous sections, we explored spatial data and SRS. They are the key elements you
need to build your map. Indeed, maps are planar representation of spatial data. You need to
collect the appropriate data to represent the real objects you want to include in your map
and you need to choose an SRS to organize your data into the map.

Keep in mind that maps are representations, a proposition of yours. They are the way you
express your knowledge and your vision of the world. To fully accomplish this, there is a
third basic ingredient for your map: symbols.

GIS Fundamentals

[18]

Symbols enable you to add information to the features shown on a map. For example,
colors can be used to indicate a classification of roads. Imagine you need to produce a map
of a country with a road network. You have a vector data set containing road polylines.
A simple approach is to render all features with the same symbol, as shown in following
figure. The map is not really informative unless you are a transportation expert. You won't
extract any information from the map and it looks ugly too.

Lets have a look at a similar map produced with ArcGIS Online
(http://www.esri.com/software/arcgis/arcgisonline).

Chapter 1

[19]

It contains the road network symbolized with different colors and line widths, labels showing
you highway codes, major towns represented with small circles and labels. Besides, there
is a background depicting heights with colors and shading. Does it now look more familiar
to you?

In Chapter 6, Styling Your Layers, we will learn how to apply symbols in GeoServer to
produce maps like the previous one. For now you need to familiarize yourself with simple
and thematic maps.

GIS Fundamentals

[20]

Time for action – exploring OpenStreetMap
Are you ready to explore some nice maps? We are going to navigate through a great bunch
of spatial data, OpenStreetMap.

1. Open your browser and go to http://www.openstreetmap.org.

2. The website offers you a small scale map centered on your actual location,
as derived from browser information.

Chapter 1

[21]

3. Center your map on London, UK and zoom in with the tool shown on the
left-hand side. You can see that many more road types and locations are
now shown in the map:

GIS Fundamentals

[22]

4. Now enter the Piccadilly Circus, London, UK address in the Search textbox on the
left and press the Go button. A list of results matching your search is presented on
the left side of the map. Pick the first item:

5. The map is now at a great scale (look at the scalebar on the bottom-left angle) and
the symbols are changed to show you greater detailed information about roads and
locations. You can find street names, directions for car traffic, buildings' footprint,
and icons for points of interest. The general look and feel resembles a printed city
map you can pick up at tourist offices.

Chapter 1

[23]

OpenStreetMap does not require you to register for browsing or exporting the
data. Anyway, if you are interested in maps and open source data, you may
consider getting involved in the project. OSM is a collaborative project to create
a free editable map of the world, currently involving over half a million users all
around the world. You may add data or find errors on locations you know well.

What just happened?
You explored several maps representing the same data set in quite different ways. Different
symbols and hiding subsets of data are powerful tools to produce clear and nice looking
maps. You are now ready to discover a different kind of map.

Adding more colors to your maps
The maps we encountered so far are often defined as general maps. General maps focus
on the description of the physical, political, and human features on the territory. All this
data is portrayed for its own sake. In a nutshell, it can be said that general maps tell you
where objects are located in space, while thematic maps talk about things happening in the
space. Thematic maps focus on displaying a single topic and portray spatial distribution and
variation. You have general data like administrative boundaries or road networks, but this is
represented as a base layer for general reference.

Among thematic maps, those using choropleth or dot representations are by far the most
common type you will be using GeoServer for.

Choropleth maps
Choropleth maps show statistical data aggregated over predefined regions, such as
counties or states, by coloring or shading these regions. You can draw states according to
their population, gross domestic product, car owners, and the number of national parks. You
are not limited to a single variable; indeed you can merge different values from more than
one attribute associated to spatial objects.

GIS Fundamentals

[24]

The following figure shows a map of European countries colored according to gross domestic
product values. Legend on the right shows the five classification intervals. Values were
normalized to Eu-27 average.

(Courtesy of http://epp.eurostat.ec.europa.eu)

Chapter 1

[25]

Proportional maps
In proportional maps, symbols of different sizes represent data associated with different
areas or locations within the map. As an example, the countries' capitals can be represented
with a circle proportional to their population.

GIS Fundamentals

[26]

Time for action – making your thematic map
Are you ready for building maps? We can do this without GeoServer; indeed we will install it
in the next chapter. For now, you will play with an online map engine and Google Earth to try
your understanding of thematic maps concepts.

1. Point your browser to http://thematicmapping.org/engine/.

2. Choose a statistical Indicator from the drop-down list, that is, CO2 emissions,
then select Year as 2004. Leave all other values as the proposed defaults.

Chapter 1

[27]

3. Select the Preview button; a pop up will show you a Google earth plugin with
countries rendered in different colors according to CO2 emissions in world countries.

GIS Fundamentals

[28]

4. Now try a proportional symbol map. Select Mobile phone subscribers per 100
inhabitants as Indicator and 2006 as Year. Choose Proportional symbol for
Technique and Regular polygon as symbol style. Select circle from the drop-down
list. Leave the default colors unchanged and select Equal intervals for classification.

Chapter 1

[29]

What just happened?
You built a couple of thematic maps selecting data, symbol size, and color. You will need to
set exactly these parameters in GeoServer to produce beautiful maps. This time we did it
without exploring the technical details behind features rendering. In Chapter 6, Styling
Your Layers, you will learn how to use SLD (styled layer descriptor) to make thematic maps.

Summary
We had a brief but complete introduction to spatial data and maps in this chapter. It was
somewhat a theoretical chapter, but we promise you it was the first and last of this kind!
From now on, we are going to run real stuff with GeoServer.

Specifically, you learned how an object is referenced to its location, which storage models
you can use with spatial data (for example, vector versus raster), and eventually you learned
to represent spatial features in a map.

We are now ready to pick up GeoServer, unpack, and install it on your computer.

2
Getting Started with GeoServer

Congratulations on your choice to take your data to the world with GeoServer.
GeoServer can be installed on many different operating systems, since it's a
Java application. You can run it on any kind of operating system for which exists
a Java virtual machine. It takes advantage of multi-threaded operations, and
supports 64-bit modern operating systems.

This chapter will cover, in detail, the steps that will bring you to a successful
installation. Though we will explain the whole process in detail, don't be afraid.
As soon as you finish reading it, you will have your running copy of GeoServer.
The steps will be illustrated in two scenarios, an Ubuntu 12.04 machine and a
Windows 7 machine. We chose these two as they cover the majority of users.
Besides Ubuntu being a Debian derivative, the installation process can be easily
reproduced on other similar distributions, for example, Debian or Linux Mint.

We'll talk about the advanced settings most useful in taking your configuration to a
production environment in Chapter 10, Securing Your GeoServer Before Production,
and Chapter 11, GeoServer in a Production Environment.

In this chapter we're going to cover the following topics:

 � System requirements

 � Obtaining GeoServer (latest 2.2.0)

 � Installation on Ubuntu Linux

 � Installation on Windows 7

 � OS independent installation

 � Basic security measures by changing the default username and password

Getting Started with GeoServer

[32]

Installing Java
GeoServer is a Java application. So, we need to ensure that you have it installed and properly
working on your machine, but you don't need to know how to write Java™ to install or to get
started using GeoServer.

There are two main packages of Java. Depending on what you are planning to do with Java,
you may want to install a JDK (Java Development Kit) or JRE (Java Runtime Environment).
The former enables you to compile Java™ code, while the latter has all you need to run most
Java applications.

Starting from release 2.0, GeoServer does not need a full JDK installation and you can go
safely with JRE. It works well with Java 6 but as Java 7 is not deeply tested by developers, it
should work but you may experience minor issues. Unless you have some strong reasons to
use Java 7, you should use JRE 6.

In the 90s, Java development was started by Sun Microsystems. Sun has developed each new
release until it merged into Oracle Corporation. While Oracle did not change the Java license
to a commercial one, there are some license issues (maybe it would be worthy to add some
reference here) preventing Oracle Java™ from being available on an Ubuntu repository.

On Ubuntu current releases, you will find OpenJDK already installed in the desktop edition;
in the server, you need to choose it at setup. While there are a few users running GeoServer
on OpenJDK with no issues, the developers community does not test it intensively and hence
you can expect some performance loss.

Oracle Java™ should be your first choice unless you have some specific issues. In the
following steps, we will use Oracle Java™ JRE. If your installation machine is a new one,
then chances are that there is no Java runtime pre-installed. Let's check.

Time for action – checking the presence of Java on Windows
We will verify the presence of a JRE/JDK installation on Windows, using the following steps:

1. From the Start menu, select Control Panel.

2. Then select Programs. If your system has a JRE/JDK installed, you should see an
icon with the Java logo as shown in the following screenshot. It is a shortcut to
the Java control panel.

Chapter 2

[33]

3. Open the Java control panel and select the Java tab. Here you will find settings
for JRE. Press the Show Me button to visualize the installed release and the
installation folder.

Getting Started with GeoServer

[34]

What just happened?
You checked for the presence of Java on your computer. In case you didn't find it, we
are going to install it in the next section. (If you did find it, skip to the Installing Apache
Tomcat section.)

Time for action – checking the presence of Java on Ubuntu
We will check JRE/JDK installation from the command line.

1. Log in to your server and run this command:
~ $ sudo update-alternatives --config java

2. If there is no Java properly configured you should see an output like the following:
update-alternatives: error: no alternatives for java.

3. In case there is one or more Java installed the output will be similar to:

There is only one alternative in link group java: /usr/lib/jvm/
java-7-openjdk-amd64/jre/bin/java

Nothing to configure.

Or:

There are 2 choices for the alternative java (providing /usr/bin/
java).

Selection Path Priority Status

————————————————————

* 0 /usr/lib/jvm/java-6-openjdk/jre/bin/java 1061 auto mode

1 /usr/lib/jvm/java-6-openjdk/jre/bin/java 1061 manual mode

2 /usr/lib/jvm/java-6-sun/jre/bin/java 63 manual mode

Press enter to keep the current choice[*], or type selection
number:

What just happened?
We determined if a Java installation is already present on our machine. This is a basic
requirement for our installation. We had the opportunity to check if the installed release,
in case we found it, is suitable for running GeoServer.

Now we will go through the installation of JRE.

Chapter 2

[35]

Time for action – installing JRE on Windows
We will install Oracle JRE 1.6. We are assuming that you didn't find any previous
Java installation.

1. Navigate to the Downloads tab at http://www.oracle.com/technetwork/
java/javase/downloads/jre6u37-downloads-1859589.html.

2. Select the installer for Windows 64-bit, that is, jre-6u37-windows-x64.exe, and save
it in a convenient folder.

3. Select the downloaded file and run it as an administrator; press the Yes button when
asked from the User Account control.

4. Go with the default settings and press the Install button.

Getting Started with GeoServer

[36]

5. After it has been downloaded, you should see a window informing you about the
success of installation.

What just happened?
We installed JRE on your Windows computer. The first requirement is now fulfilled and you
can go over to the Tomcat installation.

Time for action – installing JRE on Ubuntu
We will install Oracle JRE 1.6. As mentioned previously, there is no Ubuntu package for Java
6; we are going to perform a manual installation.

1. Visit the download area at http://www.oracle.com/technetwork/java/
javase/downloads/jre6u37-downloads-1859589.html.

2. Download the tar.gz archive, choosing the 32-bit or 64-bit archive, depending on
the Ubuntu edition you are working with. You must accept the license agreement
(reading it might be a nice idea) before you can select one of the tar.gz archives
(be sure to avoid rpm archives as they are not for Debian-based Linux distribution).

3. Save the archive to your home folder and extract it.
~ $ chmod a+x jre-6u37-linux-x64.bin

~ $./jre-6u37-linux-x64.bin

Chapter 2

[37]

4. The JRE 6 package is extracted into ./jre1.6.0_37 folder. Now move the JRE 6
directory to /opt and create a symbolic link to it in the default folder for libraries.
~ $ sudo mv ./jre1.6.0_37* /opt

~ $ sudo ln -s /opt/jre1.6.0_37 /usr/lib/jvm/

5. Let's check the installation:
~ $ /opt/jre1.6.0_37/bin/java -version

java version "1.6.0_37"

Java(TM) SE Runtime Environment (build 1.6.0_37-b06)

Java HotSpot(TM) Client VM (build 20.12-b01, mixed mode)

6. Although not strictly requested by the GeoServer installation, it is worth configuring
the JRE as the primary Java alternative in your system:
~$ sudo update-alternatives --install /usr/bin/java java /usr/lib/
jvm/jre1.6.0_37/bin/java 0

7. Now you need to configure the Oracle JRE as default:
~ $ sudo update-alternatives --config java

There are 2 choices for the alternative java (providing /usr/bin/
java).

Selection Path Priority
Status

--

* 0 /usr/lib/jvm/java-6-openjdk-amd64/jre/bin/java 1061 auto
mode

 1 /usr/lib/jvm/java-6-openjdk-amd64/jre/bin/java 1061 manual
mode

 2 /usr/lib/jvm/jre1.6.0_37/bin/java 0 manual
mode

Press enter to keep the current choice[*], or type selection
number: 2

update-alternatives: using /usr/lib/jvm/jre1.6.0_37/bin/java to
provide /usr/bin/java (java) in manual mode.

8. Clean your box by deleting the archive:

~$ rm jre-6u37-linux-x64.bin

Getting Started with GeoServer

[38]

What just happened?
We installed JRE. Now we can run a Java application on the JVM contained in the JRE. The JVM
supports several different kinds of Java application; for example, a console-only application, an
applet running in a browser, or a full desktop application. For GeoServer (a web application),
we need another component on top of the JVM, that is, a servlet container.

Installing Apache Tomcat
Having correctly installed the JRE you can now pass on and install the servlet container.
Servlet container, or web container, is the component server that interacts with the
servlets. It is responsible for managing the lifecycle of servlets, mapping a URL to a
particular servlet, and ensuring access security. It should implement Java servlet and
JavaServer Pages technologies.

As for JRE, you have a few choices here; a brief list is at http://en.wikipedia.org/
wiki/Web_container.

Apache Tomcat, GlassFish, and JBoss are most popular and are all available in an open source
edition. You may wonder which one is the best choice for running GeoServer. In a production
environment, usually the same container is shared among several web applications. You
are not going to choose the container; the architects and system administrators made
their choices and you have to conform to them. As a beginner, you have the opportunity
of selecting it! Apache Tomcat should be your first choice as it is widely adopted in the
Geoserver developer's community. If you run into any issues, the answer is probably
waiting for you in the mailing list archive.

We are going to install Apache Tomcat. It is an open source project of Apache foundation
(http://tomcat.apache.org) and there are reasons for installing it such as it is widely
used, well-documented, and relatively simple to configure.

So let's start the Apache Tomcat installation.

Time for action – installing Apache Tomcat on Windows
We will install the Apache Tomcat 7.x release.

On Windows, we will use the installer. It will add an item in the service control panel allowing
you to set Tomcat for automatic startup.

1. Open your browser and visit the download page for 7.x releases at
http://tomcat.apache.org/download-70.cgi.

2. Select the 32-bit/64-bit Windows Service Installer and save the EXE file to a folder
on your machine.

Chapter 2

[39]

3. Select the downloaded file and run it as the administrator, then press the Yes button
when asked from the User Account control.

4. You need to agree to the license agreement.

5. Leave the default components selection unchanged. We don't need the Host
Manager nor the web application examples:

Getting Started with GeoServer

[40]

6. Go with the default port number, unless you know there are other services
bounded to them. Set the User Name and Password for web administration
(for example, tomcat).

7. If your JRE installation was successful, the installer will prompt you with the right
path to it. In case you have more than one JRE/JDK installed, you can choose which
one Tomcat will use:

Chapter 2

[41]

8. Lastly you have to supply the folder where Tomcat will be installed and then press
the Install button:

9. The installation process will create a Windows service for you. After the installation,
it will try to start the Tomcat 7 service. You will now have a new icon on the system
tray. From the pop-up menu, you can control the Tomcat, starting and stopping it or
accessing the configuration console:

What just happened?
We installed Apache Tomcat as a service on Windows. Your computer is now ready to host
the Geoserver web archive.

Getting Started with GeoServer

[42]

Time for action – installing Apache Tomcat on Ubuntu
We will install Apache Tomcat 7.x release.

On Ubuntu, you have two alternatives for installing Apache Tomcat. You can use the package
manager to get it. At the time of writing, Ubuntu repositories contain the 7.0.26 release of
Apache Tomcat for Ubuntu 12.04. I prefer, and we will be following this method in the book,
to download the archive and perform a manual installation. You will have full control over
the installation and you can choose the appropriate release number. On the other hand, you
can't rely on automatic updates for Tomcat.

1. You may want to read the license agreement:
http://www.apache.org/licenses.

2. Download the archive:
~$ wget http://apache.panu.it/tomcat/tomcat-7/v7.0.27/bin/apache-
tomcat-7.0.27.tar.gz

3. Extract it in a folder for alternate applications, specific to your server; /opt sounds
like a good place.
~$ sudo tar xvfz apache-tomcat-7.0.27.tar.gz -C /opt

4. You need to properly configure Tomcat before you can use it. Go inside the main
folder created while extracting the archive; you should see the following structure:
~$ ls -lah /opt/apache-tomcat-7.0.27

total 120K

drwxr-xr-x 9 root root 4.0K Jun 6 12:16 .

drwxr-xr-x 3 root root 4.0K Jun 6 12:16 ..

drwxr-xr-x 2 root root 4.0K Jun 6 12:16 bin

drwxr-xr-x 2 root root 4.0K Mar 31 16:45 conf

drwxr-xr-x 2 root root 4.0K Jun 6 12:16 lib

-rw-r--r-- 1 root root 56K Mar 31 16:45 LICENSE

drwxr-xr-x 2 root root 4.0K Mar 31 16:44 logs

-rw-r--r-- 1 root root 1.2K Mar 31 16:45 NOTICE

-rw-r--r-- 1 root root 8.7K Mar 31 16:45 RELEASE-NOTES

-rw-r--r-- 1 root root 11K Mar 31 16:45 RUNNING.txt

drwxr-xr-x 2 root root 4.0K Jun 6 12:16 temp

drwxr-xr-x 7 root root 4.0K Mar 31 16:44 webapps

drwxr-xr-x 2 root root 4.0K Mar 31 16:44 work

Chapter 2

[43]

5. The bin and conf folders contain the configuration files and the init script
you can edit in order to adjust settings. On a new Unix box, you shouldn't have
any issues with the default configuration. If you are installing on a server with
other services running, you should check the following points:

1. Default configuration tries to bind the HTTP connector to port 8080. If it
is already used for another service, you need to edit the /opt/apache-
tomcat-7.0.27/conf/server.xml file. Find the following section:
<Connector port="8080" protocol="HTTP/1.1"

 connectionTimeout="20000"

 redirectPort="8443" />

2. You have to replace 8080 with a port number you know is free to use on
your system. Be sure to use a port number higher than 1024. You may guess
that changing it to port number 80 is a good idea. On one hand, this will
enable you to access your Tomcat installation and web application deployed
on it from the browser without having to add the :8080 syntax to your HTTP
requests. On the other hand, you have to consider that Apache Tomcat is
not developed with strong HTTP security in mind, and this configuration
may be unsecure if you expose your container on the Internet. Using a
proxy is the correct approach to get the same result while retaining security.
Configuring a proxy for Geoserver will be covered in Chapter 11, GeoServer
in a Production Environment.

3. Also remember you have to restart Tomcat for any change you make to the
configuration files.

4. In order to access the web interface for administration tasks you need to
edit the security settings. Go into the conf folder and edit the tomcat-
users.xml file. The following file syntax is quite self-explanatory:
~$ sudo vi /opt/apache-tomcat-7.0.27/conf/tomcat-users.xml

5. Find and uncomment the following section:
<!--

 <role rolename="tomcat"/>

 <role rolename="role1"/>

 <user username="tomcat" password="tomcat" roles="tomcat"/>

 <user username="both" password="tomcat"
roles="tomcat,role1"/>

 <user username="role1" password="tomcat" roles="role1"/>

-->

Getting Started with GeoServer

[44]

6. You also need to add a "manager-gui" role and assign it to a user. You
may also want to change the password value. After the editing, the section
should looks as follows:
 <role rolename="tomcat"/>

 <role rolename="role1"/>

 <role rolename="manager-gui"/>

 <user username="tomcat" password="tomcat"
roles="tomcat,manager-gui"/>

 <user username="both" password="tomcat"
roles="tomcat,role1"/>

 <user username="role1" password="tomcat" roles="role1"/>

7. Start up Tomcat:
~$ sudo /opt/apache-tomcat-7.0.27/bin/catalina.sh start

Using CATALINA_BASE: /opt/apache-tomcat-7.0.27

Using CATALINA_HOME: /opt/apache-tomcat-7.0.27

Using CATALINA_TMPDIR: /opt/apache-tomcat-7.0.27/temp

Using JRE_HOME: /usr

Using CLASSPATH: /opt/apache-tomcat-7.0.27/bin/
bootstrap.jar:/opt/apache-tomcat-7.0.27/bin/tomcat-juli.jar

8. You succeeded starting the servlet container and you can now see it among
the running processes:
~$ ps -ef | grep java

root 1960 1 5 14:06 pts/0 00:00:01 /usr/
bin/java -Djava.util.logging.config.file=/opt/apache-
tomcat-7.0.27/conf/logging.properties -Djava.util.logging.
manager=org.apache.juli.ClassLoaderLogManager -Djava.
endorsed.dirs=/opt/apache-tomcat-7.0.27/endorsed -classpath
/opt/apache-tomcat-7.0.27/bin/bootstrap.jar:/opt/apache-
tomcat-7.0.27/bin/tomcat-juli.jar -Dcatalina.base=/
opt/apache-tomcat-7.0.27 -Dcatalina.home=/opt/apache-
tomcat-7.0.27 -Djava.io.tmpdir=/opt/apache-tomcat-7.0.27/
temp org.apache.catalina.startup.Bootstrap start

9. Remove the archive:

~$ rm apache-tomcat-7.0.27.tar.gz

What just happened?
We installed Apache Tomcat. We are really close to finishing the installation process.
You can now run the Java web application on your server.

Chapter 2

[45]

Time for action – configuring Tomcat as a service on Ubuntu
On Windows we configured Tomcat as a system service, that is, a program running at boot
without any user action. Are you wondering why on Ubuntu you have to manually start
Tomcat? You don't. Indeed, the operating system can be configured for automatic start
of services. In this section, you will create a script and learn how it works.

1. Open your preferred editor and enter the following lines. Be sure to launch the
editor with sudo as we are going to create a file in a system folder.
#!/bin/sh
BEGIN INIT INFO
Provides: tomcat
Required-Start: $local_fs $remote_fs $network $syslog
Required-Stop: $local_fs $remote_fs $network $syslog
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: Start/Stop Tomcat v7.0.27
END INIT INFO
#
/etc/init.d/tomcat
#
export JAVA_HOME=/usr/lib/jvm/jre1.6.0_37
export PATH=$JAVA_HOME/bin:$PATH
export CATALINA_HOME=/opt/apache-tomcat-7.0.27
export JAVA_OPTS="-Djava.awt.headless=true"

case $1 in
 start)
 sh $CATALINA_HOME/bin/startup.sh
 ;;
 stop)
 sh $CATALINA_HOME/bin/shutdown.sh
 ;;
 restart)
 sh $CATALINA_HOME/bin/shutdown.sh
 sh $CATALINA_HOME/bin/startup.sh
 ;;
 *)
 echo "Usage: /etc/init.d/tomcat {start|stop|restart}"
 exit 1
 ;;
esac

exit 0

Getting Started with GeoServer

[46]

2. The previous script is simple and contains all of the basic elements you will need
to get going. Pay attention to the path; you can adjust your script according to
your system settings.

3. Call the new file tomcat and save it in the /etc/init.d folder.

4. Now, set the permissions for your script to make it executable:
~$ sudo chmod a+x /etc/init.d/tomcat

5. Let's try to call it and check for any problems:
~$ sudo service tomcat

Usage: /etc/init.d/tomcat {start|stop|restart}

6. Try starting Tomcat:
~$ sudo service tomcat start

7. Ok, it is running now:
~$ ps -ef | grep java

root 1960 1 5 14:06 pts/0 00:00:01 /usr/bin/
java -Djava.util.logging.config.file=/opt/apache-tomcat-7.0.27/
conf/logging.properties -Djava.util.logging.manager=org.apache.
juli.ClassLoaderLogManager -Djava.endorsed.dirs=/opt/apache-
tomcat-7.0.27/endorsed -classpath /opt/apache-tomcat-7.0.27/
bin/bootstrap.jar:/opt/apache-tomcat-7.0.27/bin/tomcat-juli.jar
-Dcatalina.base=/opt/apache-tomcat-7.0.27 -Dcatalina.home=/opt/
apache-tomcat-7.0.27 -Djava.io.tmpdir=/opt/apache-tomcat-7.0.27/
temp org.apache.catalina.startup.Bootstrap start

8. Now stop it:
~$ sudo service tomcat stop

9. Now that you have a working script, the last step is adding to configured services.
We will use update-rc:
~$ sudo update-rc.d tomcat defaults

 Adding system startup for /etc/init.d/tomcat ...

 /etc/rc0.d/K20tomcat -> ../init.d/tomcat

 /etc/rc1.d/K20tomcat -> ../init.d/tomcat

 /etc/rc6.d/K20tomcat -> ../init.d/tomcat

 /etc/rc2.d/S20tomcat -> ../init.d/tomcat

 /etc/rc3.d/S20tomcat -> ../init.d/tomcat

 /etc/rc4.d/S20tomcat -> ../init.d/tomcat

 /etc/rc5.d/S20tomcat -> ../init.d/tomcat

10. Reboot your system and check if Tomcat is already running.

Chapter 2

[47]

What just happened?
We created a shell script for starting Apache Tomcat. Now as you boot your Ubuntu machine,
Tomcat will be initialized and all the web application content will be available for user
requests. If you prefer to manually start and stop Tomcat, the script could yet be useful for
you. Just create it as described and avoid the last step. You will use the script to start or stop
Tomcat from the command line, that is, sudo tomcat start or sudo tomcat stop.

Have a go hero – exploring the Tomcat web interface
Apache Tomcat ships with a web interface for basic configuration and administration tasks.
You are going to use it for installing Geoserver. Open your browser and point to the base
main (for example, http://localhost:8080/). Do you remember we edited a file about roles,
users, and passwords? You will be presented with an HTTP digest authorization form; try to
guess which credentials you have to supply. Explore the manager application.

Getting Started with GeoServer

[48]

Pop quiz – setting up Java
Q1. You are going to set up a new machine for running GeoServer. The operating system is a
64-bit one; which Java setup you need to download?

1. A 32-bit JRE

2. A 64-bit JRE

3. Both runs fine on a 64-bit OS

Q2. On the same machine where Tomcat is set up, what do you need to install?

1. A 32-bit Tomcat setup

2. A 64-bit Tomcat setup

3. Neither of the above; Tomcat java code runs on 32-bit or 64-bit JVM

Installing GeoServer
We are well on our way! Go to the GeoServer site (http://geoserver.org/display/
GEOS/Stable) and review the installation options available. You'll find several versions of
GeoServer. We're going to be using the Web Archive version.

Chapter 2

[49]

We will deploy the web archive on Apache Tomcat. As you may have guessed, using a Java
application server is pretty much the same on any operating system. The next section
is common to Linux and Windows and then we will have a little difference in the book,
depending on the operating system you are using.

Time for action – deploying GeoServer on Tomcat
With Java installed and working, let's install the GeoServer. The latest version is 2.2.

1. Download the OS-independent version from GeoServer's download page. You can
point your browser to the URL or use a command-line tool like wget:
~$ wget http://downloads.sourceforge.net/geoserver/geoserver-2.2-
war.zip

2. Unzip the archive file:
~$ unzip geoserver-2.2-war.zip
The war file for GeoServer is quite big, actually a little more
than 52 MByte. In Tomcat 7 Manager there is a default limit for
deployable application that is at 50 MByte. You will set it to a
safe size for GeoServer. Open the $CATALINA_HOME/webapps/manager/
WEB-INF/web.xml file and look for this section
 <multipart-config>
 <!-- 50MB max -->
 <max-file-size>52428800</max-file-size>
 <max-request-size>52428800</max-request-size>
 <file-size-threshold>0</file-size-threshold>
 </multipart-config>

3. Set the max-file-size to 62914560 value both in max-file-size and max-
request-size parameters. Save the file and restart Tomcat.

4. Point your browser to the application manager at
http://localhost:8080/manager/html.

5. You will be requested to insert a User Name and a Password, if you follow the
instructions on installing Tomcat. Insert tomcat as User Name and the same
as Password:

Getting Started with GeoServer

[50]

6. Now we are in the application manager, the panel where we control the web
application running on our container. Scroll down to the Deploy section:

7. Press the Browse button in WAR file to deploy and select the geoserver.war file.

8. Press the Deploy button. After a while you will see the OK response from the
manager. Now GeoServer is listed among the web applications deployed in Tomcat.

9. Click on the /geoserver link shown in the column on the left-hand side of the list.
You are now looking at the start page of your brand new GeoServer instance:

Chapter 2

[51]

What just happened?
We deployed the GeoServer web archive on Tomcat. It unpacked the archive content. If there
were no errors in the package, thanks to the great job of GeoServer developers (chances are
that you won't find them), then Tomcat automatically starts GeoServer.

Implementing basic security
The web interface shown at http://localhost:8080/geoserver requires you to log in. You
can use the default values of admin as username and geoserver as password. The new
interface will show you some warning about security issues:

Getting Started with GeoServer

[52]

You may ignore the third and fifth warning; we will cover them in detail in Chapter 10, Securing
Your GeoServer Before Production. It is a good idea to address the others immediately.

Time for action – improving security settings
1. We will start by changing the default password for the administrator. Click on the

Change it link on the left-hand side of the warning.

2. A new page containing user properties will show up. Insert the new password in the
Password and Confirm password textboxes and click on the Save button. You don't
need to restart GeoServer or Tomcat; the new password is active now!

3. The users.properties.old file is a security risk because it contains user
passwords in plain text. GeoServer does not need it so it's safe to delete it.
~$ sudo rm /opt/apache-tomcat-7.0.27/webapps/geoserver/data/
security/users.properties.old

Chapter 2

[53]

4. Now open the masterpw.info file. It contains the password generated by
GeoServer for the root user. Store it in a secure place and delete the file.

~$ sudo rm /opt/apache-tomcat-7.0.27/webapps/geoserver/data/
security/masterpw.info

What just happened?
Although you are setting up a development machine, security is always an issue. GeoServer
ships with a default administrative password; you logged onto the web interface and
changed the default password, then fixed some other issues. You had just a brief taste
of the powerful GeoServer's web interface. Be sure we are going to cover it in great
detail in the next chapter.

Pop quiz – GeoServer security
Q1. Where can you change the password for accessing GeoServer?

1. In the CATALINA_HOME\conf\tomcat-users.xml file
2. In the GeoServer interface
3. In the Windows Control Panel

Q2. Can you run more than one GeoServer on your machine?

1. Yes, but they all share the same administrator password
2. Yes, and each one has an independent administrator account
3. Yes, but you need to use the container administrator account for

administering GeoServer
4. No, you can't

Summary
We've laid out a basic foundation to get GeoServer up and running.

In this chapter, you learned how to check whether the Java Runtime Environment (JRE 1.6)
is installed and properly working. You also installed Tomcat on Windows and Linux, and
configured it to start automatically.

After filling the system requirements, you explored the web archive option to install
GeoServer and accessed the administrative interface using a web browser.

The web interface is a very powerful tool and you have to know it well to use all GeoServer's
features. In the next chapter, we will explore all the sections, looking in detail at what you
can do to configure it, how to add data, and preview maps.

3
Exploring the

Administrative Interface

In this hands-on chapter we're going to explore GeoSever 2.2's administrative
interface. Big improvements have been made to the interface in the 2.x series.
Menu names and icons are consistent across each section. An enhanced
interface for the integrated GeoWebCache is available in 2.2; now you can
perform almost all caching configurations from the GeoServer interface. Also,
the security interface was renewed to keep track of the huge improvements
in the GeoServer's security module. The good news is we're going to use the
mouse more here than any other chapter, so the keyboard will get a break.

Let's get right to it. Get logged in.

Understanding the interface
You used the web interface in the previous chapter to change the password for the admin
user. Log in again on GeoServer; we will now focus our attention on the layout.

As you can see in the following screenshot, there are three main areas in the GeoServer
web interface.

The central area is where information is shown; elements inside it change according to the
operation you are performing. Just after you log on, it shows you a briefing of configured
data, and warning or errors that you should correct. The release number is shown at the end
and there is a link to the administrator mailbox; it defaults to a famous ancient geographer
until you insert your data.

Exploring the Administrative Interface

[56]

On the right-hand side, there is a list showing you GeoServer capabilities. The listed
acronyms refer to standard OGC protocols; we will talk about some of them in detail,
and each of them has at least one release supported. Those numbers are links to the
XML documents that exactly describe which data and operations each protocol supports.
They are very valuable resources for clients willing to use your services.

On the left-hand side, there is a table of contents listing the configuration areas. Each area
contains links to administrative operations. When you click on one of them, the central
area shows you contextual options. We will explore each area in the next paragraphs.

Chapter 3

[57]

About & Status
This area gives you information about runtime variables and how GeoServer is described to
clients that connect to it.

Server Status
Server Status gives you a nice overview of the main configuration parameters and
information about the current state of the GeoServer. The information is organized in a
table view. Other than being informative, this view lets you perform some maintenance
operations. We will describe the main items listed in the following screenshot:

Exploring the Administrative Interface

[58]

Locks
Using Transactional Web Feature Service (WFS-T) a client may edit the configured feature
types. To avoid data corruption, GeoServer locks the data on which a transaction is required
until it ends. If the number shown is greater than one, then there are some transactions
going on with your data. The Free Locks button lets you reset a hung editing session,
removing any orphan processes to free locks that might have been abandoned.

Connections
This shows you the number of vector data store connections. Vector data stores are
repositories configured for persistence of features.

Memory Usage
This shows you how much memory GeoServer is using. You can manually run the garbage
collector by clicking the Free memory button. This will destroy the Java objects marked
for deletion.

JVM Version and fonts
This is the version of the Java Virtual Machine (JVM) that the GeoServer is using. You
configured it in Chapter 2, Getting Started with GeoServer, in the installation processes.
You'll also see a list of the fonts seen by the JVM and GeoServer. Fonts are useful to render
labels for spatial features; we will explore this in Chapter 6, Styling Your Layers.

JAI usage and configurations
The Java Advanced Imaging (JAI) libraries are used for image rendering and allow for better
performance when GeoServer manipulates raster data, as with Web Coverage Service (WCS)
and Web Map Service (WMS) requests. We will install native JAI support in Chapter 11,
Tuning GeoServer in a Production Environment.

Update Sequence
This shows you how many times the server configuration has been updated. It is not that
informative as of the time this writing. The developers seem to have plans to use this to let
you know that your configuration file has been updated externally from the application.
Possibly from a REST call.

Chapter 3

[59]

Resource Cache
GeoServer caches connections to stores, feature type definitions, external graphics,
font definitions, and CRS definitions as well. You can press the Clear button to force
those GeoServer reopening the stores and rereading image and font information.

Configuration and catalog
This option is very useful to update the configuration without having to restart the service.
GeoServer keeps configuration data in memory. If there is an external process updating the
files containing the configuration's parameters, you can force GeoServer to reload data from
the disk.

GeoServer Logs
From here you can have a preview at the current log file, or you can download the full
content from the link on the bottom. It may be useful when you can't access the filesystem
where the actual log file is stored.

Contact Information
In this panel, you should insert information on the organization and people managing
the service. The default configuration pays honor to Claudius Ptolemaeus, an ancient
cartographer (http://en.wikipedia.org/wiki/Ptolemy). This information is
included in the WMS capabilities and is reference information for your users.

Exploring the Administrative Interface

[60]

About
Just as it states, this is just a catch-all for build information and where to find GeoServer
documentation, bug tracker, and wiki.

Time for action – manually reloading configuration
We will now perform a simple change on GeoServer's configuration to demonstrate the
reload configuration function.

1. Open the global.xml file in your preferred editor:
-~ $ sudo vi /opt/apache-tomcat-7.0.27/webapps/geoserver/data/
global.xml

2. Find the contact section and insert your details:
 <contact>
 <addressCity>Rome</addressCity>
 <addressCountry>Italy</addressCountry>
 <addressType>Work</addressType>
 <contactEmail>Stefano.iacovella@myworkemail</contactEmail>
 <contactOrganization>Packt Publishing</contactOrganization>
 <contactPerson>Stefano Iacovella</contactPerson>
 <contactPosition>Chief geographer</contactPosition>
 </contact>

3. Now save the file and close it. Then go to the web interface; in the About and Status
panel, click on the Server Status menu link to display the GeoServer status, scroll
down, and click on the Reload button.

4. Now, go to the Contact Information panel. It shows your updated information.

Chapter 3

[61]

What just happened?
We explored a simple case for using the reload configuration function. This is very useful
in case you have to update a remote server with an automatic procedure or you configure
more GeoServer instances sharing the same configuration. We will explore such deployment
options in Chapter 11, Tuning GeoServer in a Production Environment.

Have a go hero – exploring the bug tracker
GeoServer's bug tracker is a great resource to monitor. The link to the bug tracker is located
at the end of the About GeoServer page. The RSS feed to the activity stream gives you a
window into GeoServer development. Put feed://jira.codehaus.org/plugins/
servlet/streams?key=GEOS into your feed aggregator and stay in the loop.

Data
Now we're getting into the heart of the GeoServer; the data.

In this area, you can configure the data access. Stores let GeoServer know where your data
is and what it is. Layers are about how your data will be published. Jump in and look at the
layer previews first. We'll be visiting the Layer Preview section many times as we brew up
our own layers.

Layer Preview
Layer Preview includes every layer known to GeoServer. You'll find several sample layers
already listed. From here you can open an OpenLayers sample application to have a look at
what your data looks like. There are also several other preview formats; a popular one is the
KML format.

Exploring the Administrative Interface

[62]

Keyhole Markup Language (KML) is used to display data in Google Earth.

Time for action – OpenLayers preview
Let's try the OpenLayers preview. OpenLayers is a powerful JavaScript library that is useful
for building web-mapping applications. GeoServer includes a simple template application
that lets you look at a map with one layer represented.

1. On the Layer Preview page, click the OpenLayers link to see the preview.

2. The OpenLayers preview opens, showing you the topp:states shapefile.

Chapter 3

[63]

What just happened?
Did you enjoy this first taste of web mapping? OpenLayers is somewhat similar to Google
Maps; it allows you to embed your maps into your site.

Time for action – KML preview
Let's try another preview format, KML. This time GeoServer will not open up an application
as you select the layer to preview. In fact, KML is a data format and you will need another
piece of software to display it on a map.

1. If you haven't already installed Google Earth, you can download it from
http://www.google.com/earth/index.html.

2. Accept the license agreement and save the installation file.

3. On the Layer Preview page, scroll to the topp:states layer and click the KML link.

4. You are prompted for saving or opening the KMZ output file. Save it on
your filesystem.

5. Open the kmz file in Google Earth.

Exploring the Administrative Interface

[64]

What just happened?
Ok, that was pretty cool. We had GeoServer displaying layers in Google Earth. Drop the book
and play around with Google Earth. Zoom in and out, and notice how it streams data from
GeoServer. Using the drop-down box, you can also preview layers in several other formats.
SVG is ideal for importing into Adobe illustrator, for example.

Workspaces
Think of a workspace as your own personal namespace. Workspaces are very useful for
organizing your layers. You can associate many layers to one workspace. You are allowed
to have several layers with the same name, as long as they're in different workspaces.

You see workspaces and layers referred to each other separated with a colon.
For example, when looking at the list of layers in the layer preview, you'll see a
number of layer names such as nurc:Img_Sample. The workspace name is nurc
and Img_Sample is the layer name.

When you're just getting started with GeoServer, you might not think about organizing
with Workspaces. As you start to add a number of your own layers, you will soon find that
organizing these layers is necessary—think about how easy it will be to sort the layer preview
list, for example.

Chapter 3

[65]

Time for action – creating a workspace
GeoServer has a set of data already configured, and there are a few workspaces to organize
them. We will now create a new workspace for the data you will be adding in this book.

1. Select the workspaces list page.

2. Click on Add new workspace.

3. In the form, you have to enter a Name for your new workspace (in the following
screenshot, it is NaturalEarth), and http://www.naturalearthdata.com as
Namespace URI. Check Default Workspace to assign this as your default:

4. Click Submit to save your new workspace.

Exploring the Administrative Interface

[66]

What just happened?
You created a logical category for your data. The default option is useful when you start
creating a number of data stores and layers and need to add them to the same workspace,
since the default is selected by default. When you start to create layers using the REST
interface in a later chapter, you'll quickly find that workspaces are very useful as well.

Stores
Stores connect GeoServer to repositories where your data is located. Each store must be in
a workspace, so it's worth setting one up at the beginning instead of sticking stores in one
of the defaults. There are a set of stores configured, which are for the namespaces for
sample data.

Chapter 3

[67]

When creating a new data store, you have a few formats available.

GeoServer supports several different data formats, but they are classified in two types:
vector and raster. Vector data formats available are as follows:

 � Shapefile: Both as a single item or as a folder containing several shapefiles.
Shapefile is a very common format in GIS and we will use it often in this book.

 � PostGIS: A famous open source spatial database. You can configure it as a Java
Naming and Directory Interface (JNDI) resource or with a default connection.
In the first case, a jndi name has to be configured in the container of GeoServer,
for example, Tomcat, with the database connection's parameters.

 � Properties: This is a connector for a simple, small data set that you can store in a
text file. Remember that performances are not optimized with this format; use it
only for testing or for very small data sets.

 � WFS: You can access, and publish, features published by another server. Also, in this
case, you can't expect optimal performances, but it may be useful in cascading data.

There are also a set of raster formats. The most used and well-known are the GeoTIFF and
the WorldImage. GeoTIFF is a spatial extension of the tiff format; the file header contains
georeferencing information so that the map server can properly place the raster on a map.
A WorldImage is similar, but georeferencing information is saved in an external text file.

Exploring the Administrative Interface

[68]

If you are interested in a detailed description of GeoTIFF format, these are two
good starting points:

 � http://it.wikipedia.org/wiki/GeoTIFF

 � http://trac.osgeo.org/geotiff

GeoServer, after installing optional extensions, supports several other data formats.

Layers
A layer, in GeoServer, holds the metadata information about a feature type. Every time you
send some data to GeoServer, a new layer is created for you. By clicking on the link, you can
see the list of configured layers.

The list shows you the type of layers in the Type column, with a different icon for vector
and raster layers, according to the geometry shape. The Workspace and Store values of
each layer are shown. Then there are the Layer Name values, which may differ from the
file or table name where the data is stored; a tick mark shows if it is enabled, and the
last column shows the Native SRS values.

From this section, you can view and edit an existing layer, add (register) a new layer,
or delete (unregister) a layer.

By clicking on a layer name, you open the Edit Layer section. You will see there are four tabs
in the panel. Data contains the feature type's properties, for example, attributes list, and is
compiled by GeoServer when adding a new layer. You have to check the values and insert
some descriptive information about the feature type.

The Publishing tab is for configuring how a layer has to be represented. From here, you can
select one or more styles to draw features on a map.

Chapter 3

[69]

We will add layers, and have a look at each property in Chapter 5, Adding Your Own DataStore.

Layer groups
As you build complex layers, you soon discover the need to combine layers together into
groups. Layer groups allow you to order your layers to best display your data. For example, if
you're creating a map of North America, you might want to show a layer of US states on top
of North American coastal lines. Then on top of US states, you might want to show borders
for counties of those states. All of those layers can be combined into a layer group.

Styles
Here you can access the style configured in GeoServer. Styles are XML files containing a
detailed description of how a feature type has to be drawn on a map.

Exploring the Administrative Interface

[70]

From here you can access the style editor, a simple, user friendly interface for editing styles.
As you may have guessed, building a pretty map is strictly related to styles; we will cover this
in detail in Chapter 6, Styling Your Layers.

Services
After you've added some data sources and created layers with those sources, you will want
to share these with Services. In this section, you can access the general configuration for
each service exposed. You can also selectively disable them. By default, all services
are enabled.

Chapter 3

[71]

WMS
Web Map Server (WMS) is an OGC standard to publish data as maps. The GetMap
operation as defined by the standard, lets a client request maps as images, for example,
a png or jpeg file.

From this section, you can describe your WMS service, inserting information that will
be published by the capabilities of the service. You can also control resource allocation
as we have seen in Chapter 2, Getting Started with GeoServer, or set the quality parameters
for produced pictures.

Time for action – limiting the SRS list from WMS
GeoServer supports a lot of SRSs and can also transform on-the-fly spatial features from
one SRS to another. Sometimes this may be not what you want, for example, if you are
going to publish data only in a few SRSs and want GeoServer to be heavily loaded from
transformation requests. We will now learn how to limit the SRS list.

Do you know an SRS is a spatial reference system? If you are not reading the
book from start to end and this acronym sounds confusing, have a look at
Chapter 1, GIS Fundamentals.

1. On your browser, open the WMS capabilities. This is the standard output for
service description. It is an XML file containing data published, operations
supported, and other details. Go to the main page of GeoServer's interface
and click on the 1.3.0 link:

Exploring the Administrative Interface

[72]

2. You should get a huge XML file. Scroll down to All supported EPSG projections. The
following screenshot shows just a few of them; you now have an idea of how many
there are!

3. Now go to the service section and click on WMS. Then scroll down and locate the
Limited SRS list textbox. Insert the SRS code we will use throughout the book: 4326,
3857, 4269. Then press the Submit button.

4. Now repeat the capabilities request and search for the CRS section.

What just happened?
We limited the SRS-supported list. This will make the capabilities file clearer and it will
also help some clients to deal with it. You can add or remove SRS from the list at any time,
according to the data or maps you have to manage.

Chapter 3

[73]

WFS
Web Feature Server (WFS) provides raw vector data from GeoServer layers. This allows you
to share your geospatial data in a standard format. Output formats include GML2, GML3,
ShapeFile, JSON, and CSV. As with WMS, from this point on, you can access the general
configuration for the service.

WCS
Web Coverage Service (WCS) publishes raster-based layers. Geo ArcGrid are a couple of
geospatial examples of coverages. It's almost like having both WMS and WFS in one service.
It allows clients to get raster data along with geospatial data to make more analysis locally.

Detailed description of WFS and WCS are out of the book's scope; Chapter 12,
Going Further: Getting Help and Troubleshooting, will give you a brief view of
both. You will learn how to perform basic requests.

Settings
This area contains some configuration parameters that cover general GeoServer behavior.

Global
As its name states, here you can find very general parameters.

Verbose Reporting
From here you can enable beautification of XML responses in error messages, by adding line
returns. Enabling this option consumes a lot of resources, so only enable this option if you
need to. Verbose exceptions will give you multiline error messages.

Exploring the Administrative Interface

[74]

Enable Global Services
This allows you to enable or disable all services, such as WMS, WFS, and WCS, that are not
part of a virtual service. Virtual services are those that are created by workspaces. We'll talk
about this in a little more detail in Chapter 10, Securing your GeoServer Before Production.
Also worth noting is that it doesn't affect GeoWebCache (GWC) or REST-based services.

Proxy Base URL
This is useful if you have GeoServer running behind a proxy, and you want to share the
GetCapabilities document. The URL embedded in that document needs to display
the base URL as seen by the client. We'll dig into this later in future chapters.

Logging Profile
These are the default logging configurations that come with GeoServer. You can add others in
the Log4J configuration format.

Log to StdOut
This is useful when you are debugging and developing your maps, but you'll find it cleaner to
disable and tail the log file instead.

Log location
You may want to keep your logfiles outside of the data folder in cases where you want to
rotate logs. By default, these are in $GEOSERVER_HOME/data_dir, and you might want to
keep this folder clean.

Time for action – changing your logging configuration
When testing client-server interaction or exploring new functions, it may be useful to have
more information inside the logfile. We will now raise the verbosity of GeoServer.

1. Click on the Global link in the Settings menu.

2. Scroll down to the logging and profiles section.

3. Now change the Logging Profile setting to Verbose logging:

Chapter 3

[75]

4. Click on GeoServer logs in About & Status to review the logs. Optionally, review the
log from the filesystem, /data_dir/logs/geoserver.log.

What just happened?
You just switched GeoServer to logging in verbose mode. Remember to remove this option
when you are no longer testing functionalities, since it stresses the server and requires a lot
of space on the log file.

Have a go hero – making your own logging level
Read a little about log4J and create your own logging properties configuration. Why wait
until the advanced chapter? Duplicate one of the property files in $GEOSERVER_DATA_
DIR/logs. The filename will be used as the profile name. Check out http://logging.
apache.org/log4j/index.html to really customize your logging.

JAI
These settings should mostly be overlooked until you take GeoServer into production. The
options to change Memory Capacity, Memory Threshold, Title Threads, and Tile Thread
Priority are best left alone for now. The native acceleration options are checked by default,
and will use JAI native acceleration if it's installed for your operating system. We cover the
installation in Chapter 11, Tuning GeoServer in a Production Environment. If a native version
for your OS is not found, it will degrade to the Java implementation.

Exploring the Administrative Interface

[76]

Tile Caching
This area was greatly improved in Version 2.2 of GeoServer. From here you can control
almost all parameters of the integrated GeoWebCache. It is a Java-based application that
complements GeoServer. It caches WMS tiles to the filesystem. These images are then used
by WMS clients instead of going to GeoServer for each tile request.

When creating a new layer, you may choose if it has to be cached or not. The Tile layers
section lists all cached layers and lets you review and modify parameters. It also contains a
link to a layer preview very similar to that listed in the data section. The main difference is
that this preview uses cached tiles.

GeoWebCache is a companion for GeoServer, and if it is strictly integrated, there are a set of
global parameters for configuring it too. Caching defaults is your entry point for them.

The Gridsets option lets you create new tiling schemas or modify the existing ones.

All the tiles you are going to create when caching need to be stored on a filesystem. The Disk
Quota option lets you set predefined amounts of space for each layer.

Caching is a strong ally for your site's performance. In Chapter 8, Performance and Caching,
we will explore in detail how to properly cache data.

Security
Along with caching, security is an area greatly improved in the 2.2 release. Most of the
improvements are very advanced topics, such as for integrating security with other external
systems, for example, LDAP. In the Security panel, you can find links for setting user
properties and bind data to security rules, as shown in the following screenshot:

Chapter 3

[77]

The basic idea is that you create users and roles and combine them with data to enable
specific access policies. You can also limit read and write access by role. We will go over
these in detail in a later chapter.

Settings
From here you can control the global security settings.

Users, Groups, and Roles
A list of the users, groups, and roles that are configured on GeoServer are shown here.
By default, you have one user called ADMIN, and one role called ROLE_ADMINISTRATOR.

Exploring the Administrative Interface

[78]

Clicking the username allows you to edit the account password, assign new roles, and add
a role.

Data
You're able to give access to workspaces and layers in a granular way. So, after you add
a number of workspaces, you can assign roles to them here. Be on the lookout for more
information on data access rules later on in the book.

Catalog security
These options are pretty well explained here. In a nutshell, you have three modes when a
user is challenged for access. I recommend you use HIDE, which is the default. It's better
to show users only what they have access to, instead of advertising that other services
and layers exist.

Chapter 3

[79]

Services security
We went over the various service types (WCS, WFS, WMS) a few pages back. This feature
gives you control over read/write access to them. By default, no service-based security is
in effect in GeoServer. However, rules can be added, removed, or edited here.

Please note that data security and service security cannot be combined; for example, if you
disable a user's access to WMS, he will not see any layer even if you grant him access to
that layer.

Demos
A few demo applications are included with GeoServer.

The WCS request builder application is pretty handy to piece together a GetCoverage
request. It's not something you'll likely do as a beginner, but worth remembering that
the tool is available.

The Demo requests application has a number of example requests to query WCS, WFS,
and WMS. Examples to delete, update, and insert records are also included.

Exploring the Administrative Interface

[80]

Time for action – exploring Demo requests
You learned that WMS, WFS, and WCS are standards describing the interaction among clients
and servers. Each standard defines a set of operations that, from a client's point of view, are
requests. On the OGC site, you can download detailed documents describing each admitted
request. The demo application is a valuable tool to help you practice with requests. Let's
explore some basic operations:

1. Open the Demo requests application. The page is similar to the Style Editor. From
the drop-down list, you can select a set of prepared requests. They are listed with
a syntax declaring the standard as a prefix and the standard's version as a suffix.
Choose WFS_getCapabilities-1.1.xml.

2. Press the Submit button. A new panel shows, and after a while it lists the XML
response from GeoServer.

Chapter 3

[81]

3. Another basic WFS operation is getFeature, which will retrieve a feature for you.
Select WFS_getFeature-1.1.xml. If you look at the XML code, you can see a clear
reference to the topp:states layer, which is included in the sample set.

Exploring the Administrative Interface

[82]

4. Press the Submit button. A new panel shows, and after a while it lists the XML
response from GeoServer. The code is a GML representation of the features with
fid = 3, as requested in the filter.

5. Modify the following code by inserting the states.23 value:
<ogc:Filter>
 <ogc:FeatureId fid="states.23"/>
</ogc:Filter>

6. Click on the Submit button again; when the panel shows the gml code, scroll down
until you see the STATE_NAME field. Which state did you select?

Chapter 3

[83]

What just happened?
The Demo requests interface lets you select sample requests and modify them to perform
testing on GeoServer. When in doubt with a specific operation, this application should be
the first point where you go to debug. From here, you can concentrate on the request's
syntax, avoiding network issues or other problems that you may have experienced on an
external client.

SRS List
This is a list of projections that GeoServer knows about. You can filter it easily using the
Search field.

Time for action – filtering the projection list
Previously, you filtered the SRS list for WMS. Are you wondering what you will find inside this
demo? Let's see.

1. Open the SRS list demo application. Wow, there are 4,956 items in the list! Yes,
you just filtered items for WMS; but all supported SRSs are still there.

2. In the Search textbox, type in the project code for the basic projection, 4326; then
press Enter.

Exploring the Administrative Interface

[84]

3. Click on the projection code to show the projection detail. Along with the Well
Known Text description of the SRS, there is also a map showing you the area of
validity. For 4326, it is the planet's surface:

4. Repeat these steps to review 3857, which is the Google Mercator projection.

What just happened?
This gives you an idea of how each projection (4326 and 3857, in this example) is defined.
Each projection is defined by several parameters formatted in the WKT format.

If you have custom projections, they'll be included in this list. You can also check your
data_dir/user_projections folder for a epsg.properties file. Any custom
projections configured will be here, along with those that are overridden.

Chapter 3

[85]

Summary
We had a concise introduction to the GeoServer web interface. Hopefully, you are now more
confident with every section and you have a good idea of how they work.

Specifically, we covered how you can retrieve information on general configuration, server
status, and logs. Next we explored the interface section where you can configure data access,
create new layers, and publish them.

We briefly described how you can create workspaces and a data store from the shapefile.
In this chapter we also covered service-specific configurations for WFS, WMS, and WCS.
GeoServer's developers constantly take great efforts to enforce standards compliance.
In this area you can tune the services and discover the vendor options that GeoServer
offers you.

Finally we explored two areas greatly improved in the 2.2 release: caching and
security configuration.

All of these topics will be further explored in the following chapters.

In the next chapter, we will explore data stores. You will add new data to GeoServer. Not only
will you use the shapefile and PostGIS built-in data formats, you will also download and
configure two data extensions, for MySQL and Oracle.

With all these formats, you will be ready to publish 90 percent of the existing vector data.

4
Accessing Layers

One of the main aims of this book is to help you learn how to publish your
data. GeoServer lets you create layers, items containing configuration for your
data, and the way they are represented on a map. In this chapter we'll go over
different vector and raster layer output types and explore ways to use them.
We'll discover a hidden gem called the Reflector. For good measure, we'll toss
in some other output extensions.

We will cover the following points in detail:

 � Vector output types including GeoRSS and GEOJSON

 � Raster output types such as JPEG and PNG

 � OpenLayers single tile and tiled output

 � Freemarker temples

 � Using the Reflector

 � Output extensions

Accessing Layers

[88]

Layer types
In the previous chapter, we explored the Layer list interface. All layers, publishing raster or
vector data, are listed here. You can use Web Mapping Service (WMS) to publish them or
the Web Feature Service (WFS) to deliver vector features. Using the Layers Preview panel
you can easily check how your data looks:

As of GeoServer 2.2, the All Formats drop-down box on the Layer Preview page will
still include options for WFS and WMS, even when they are not active. Due to security
restrictions, when the respective services are disabled or when output formats don't apply,
you'll get an error. If your layers seem to output incorrectly and display errors or are not
being found, you might need to check your security settings.

OpenLayers
Remember this from Chapter 3, Exploring the Web Interface and Demos? Building web-
based maps is the inspiration for the book. OpenLayers is an open source JavaScript library
to display web-based maps, similar to the mapping client from Google Maps and a growing
number of others. OpenLayers is also a project of the Open Source Geospatial Foundation
(OSGeo).

LeafLet (http://leafletjs.com) is a promising mapping client with ties to OpenLayers.
Be on the lookout for examples using LeafLet in future chapters.

Chapter 4

[89]

You'll notice several options at the top of the OpenLayers preview after you click the Options
icon. Some of these options are specific to GeoServer, and not part of the WMS specification.

Time for action – exploring OpenLayers options
As the OpenLayers map opens, you will see three icons inside the map. Clicking on the
top-left one shows several options to interact with GeoServer WMS. We will now explore
some of these options.

1. If you haven't already, select the OpenLayers output option for topp:states;
or use the following URL to open the demo:
http://localhost:8080/geoserver/topp/wms?service=WMS&versi
on=1.1.0&request=GetMap&layers=topp:states&styles=&bbox=-
124.73142200000001,24.955967,-66.969849,49.371735&width=780&heig
ht=330&srs=EPSG:4326&format=application/openlayers

As you can see, the request itself is a GetMap request
to the WMS service, so why are you getting a full app
and not a plain image? Look at the parameters; there is a
format=application/openlayers key-value pair.
This makes GeoServer deliver you a full JavaScript app.

2. Change the height to 512 and width to 512 in the URL bar:
http://localhost:8080/geoserver/topp/wms?service=WMS&versi
on=1.1.0&request=GetMap&layers=topp:states&styles=&bbox=-
124.73142200000001,24.955967,-66.969849,49.371735&width=512&heig
ht=512&srs=EPSG:4326&format=application/openlayers

3. After OpenLayers loads, click on the top-left icon. Map options are shown.

Accessing Layers

[90]

4. In the tiling drop-down list, toggle between Single tile and Tiled as you pan and
zoom the map. Notice how the map refreshes for each option.

What just happened?
Single tile loads an image that fills the entire viewable area, and the Tiled version gets
256x256 square images and combines them. If you use Firebug for Firefox, you can see
the request sent to GeoServer as width=256&height=256 for the tiled version, and one
request as width=512&height=512 for the single tile.

Working with tiles
For an OpenLayers map of 512 width and 512 height, you get four images to display the map.
Each request to the server is the same, except the bbox parameter specifying the area.

The bounding box parameter is called bbox. The value for bbox is the latitude
and longitude of the area you're calling from GeoServer. The format for this
parameter is bbox=minx,miny,maxx,maxy.

Chapter 4

[91]

If your map's height and width are fairly small, using a single tile will likely take less time to
render. This depends on your data filter and number of features too, but it is a good rule of
thumb. Using a single tile will also be useful if you need to output JPEG or PNG larger than
256x256 for larger display needs. It's the same display, but as a single tile.

Most of your web-based maps (using OpenLayers, for example) will use tiled images. Splitting
images into smaller chunks helps them load faster.

Have a go hero – selecting a features subset with filters
Get a jump start on filtering. Enter a filter by using the FeatureID parameter from the Filter
dropdown. Enter states.17,states.6. This should show Colorado and Alabama. We dive
deeper into CQL (Contextual Query Language) filters in later chapters.

Accessing Layers

[92]

Exploring the Web Map Service output formats
Let's look at the URL parameters from the output request to GeoServer's WMS. Consider
this output request for the OpenLayers demo. The format parameter is application/
openlayers. The format parameter is the key to this chapter, but it's worth going over
the other parameters while we're here.

http://localhost:8080/geoserver/topp/wms?service=WMS&versi
on=1.1.0&request=GetMap&layers=topp:states&styles=&bbox=-
124.73142200000001,24.955967,-66.969849,49.371735&width=780&height=330
&srs=EPSG:4326&format=application/openlayers

The first parameter, service, explains to GeoServer what kind of request you are sending.
The value is WMS as we want to retrieve a map.

Several versions exist, so we use the version parameter to specify which WMS dialect we
are speaking, 1.1.0 in this example.

The specific request is GetMap. The layer parameter defines which data has to be
represented on the map. We can insert a comma-separated list of layers, but in this
case we are happy with just topp:states.

We go with the default rendering for the topp:states layer so the style parameter is
empty. bbox is the bounding box, or area of the map we want to display. The format of
bbox is minx,miny,maxx,maxy.

The size of the area returned will be 780 wide and 330 high. srs or projection will be
latitude and longitude, that is, EPSG: 4326. Finally, the output format will be OpenLayers.

Documentation on GeoServer-specific parameters can be found at the URL
http://docs.geoserver.org/latest/en/user/services/wms/vendor.html.

AtomPub
The Atom Publishing Protocol (Atom Pub) format is an XML-based output. Also known
as a Vector output type, it is comparable to RSS feeds which are more common. It allows
others to subscribe to features published by GeoServer. The output format is specified by
application/atom+xml as the format parameter value.

GIF
This output format is well-known. Graphics Interchange Format (GIF) has been around for
a long time on the Web. This format only supports 256 colors, so it's rarely used for high
quality images. In some cases, it is useful when simple shape outputs are produced. It's
not the best for completeness, and you will most likely favor PNG, TIFF, or JPEG instead.

Chapter 4

[93]

The output format is specified by image/gif as the format parameter value.

I have to mention, GIF should be pronounced Jif (peanut butter). CompuServe
came up with the format and the Jif pronunciation back in the late 1980s.
Check out http://www.olsenhome.com/gif.

GeoRSS
This output format is similar to your RSS feeds you'd use for syndicating other content.
The noticeable difference is the georss tag. Take a look at the georss output for the
sf:bugsites layer; you'll see that the first item has the location using <georss:poi
nt>44.384907731239096 -103.86762869467091</georss:point> to specify the
location of the site. Google and other search engines are indexing this content. Google
accepts this output format as a Geo sitemap.

The output format is specified by application/rss+xml as the format parameter value.

For more resources, take a look at the following links:
 � http://en.wikipedia.org/wiki/GeoRSS

 � http://www.georss.org

<?xml version="1.0" encoding="UTF-8"?><rss xmlns:atom="http://
www.w3.org/2005/Atom" xmlns:georss="http://www.georss.org/georss"
version="2.0">
<channel>
<title>sf:bugsites</title>
<description>Feed auto-generated by GeoServer</description>
..
<item>
<title>bugsites.1</title>
<link><![CDATA[http://192.168.1.112:8080/geoserver/wms/
reflect?format=application/atom+xml&layers=sf:bugsites&featureid=bugsi
tes.1]]></link>
<guid><![CDATA[http://192.168.1.112:8080/geoserver/wms/
reflect?format=application/atom+xml&layers=sf:bugsites&featureid=bugsi
tes.1]]></guid>
<description>
<![CDATA[<h4>bugsites</h4>
<ul class="textattributes">

 cat: <span
class="atr-value">1
 str1: <span
class="atr-value">Beetle site

Accessing Layers

[94]

]]>
</description>
<georss:point>44.384907731239096 -103.86762869467091</georss:point>
</item>
..
</channel></rss>

Check out more on GeoRSS in the documentation at
http://docs.geoserver.org/stable/en/user/
tutorials/georss/georss.html

JPEG
There is not much to say about this output format. Since PNG is more widely used these
days, it seems that this output is not often called from GeoServer. You may want to use this
format when static images of areas of maps are needed though. You can call these URLs with
wget or CURL to manually cache the output.

You can do this with GeoWebCache, but this method is quick and easy.

The output format is specified by image/jpeg as the format parameter value.

KML (Plain)
We talked about this a little bit in Chapter 3, Exploring the Administrative Interface. The Time
for action section installed Google Earth and viewed the topp:state layer. You can also use
this format directly with Google Maps. You can type the URL directly into the Google Map
search field. Obviously, your GeoServer needs to be accessible from the Internet.

Google accepts this output format as a Geo sitemap. Google is sensitive to the mime-type for
KMZ and KML outputs for Sitemaps. GeoServer meets these requirements.

The output format is specified by application/vnd.google-earth.kml.xml as the
format parameter value.

KMZ (Compressed)
This is a Keyhole compressed formatted file. In a nutshell, it's a ZIP file of KML. Google
accepts this output format as a Geo sitemap as well.

The output format is specified by application/vnd.google-earth.kmz+xml as the
format parameter value.

Chapter 4

[95]

If you're proxying a request to/from GeoServer, you'll want to ensure its setting is the
mime-type. For Apache, use AddType in your httpd.conf.

AddType application/vnd.google-earth.kmz .kmz

PDF
This output format is ideal for sharing maps. For example, you might want to display a map
using OpenLayers and provide a link to export the visible map to PDF.

The output format is specified by application/pdf as the format parameter value.

PNG
This is the format you'll be using more often for your maps, although each image will be
255 pixels wide and 255 pixels in height, otherwise known as tiles. We'll go over that further
in Chapter 8, Performance and Caching. In the output example delivered by clicking on the
output dropdown, it gives you a single tile of the entire bounding box of the data you have.

The output format is specified by image/png as the format parameter value.

SVG
This format can be used with Adobe Illustrator or Inkscape – you need to export and
further style your maps outside of GeoServer. This format seems to be the most popular
vector format.

The output format is specified by image/svg+xml as the format parameter value.

From the Inkscape FAQ:

Inkscape is an open-source vector graphics editor similar to Adobe Illustrator, Corel
Draw, Freehand, or Xara X. What sets Inkscape apart is its use of Scalable Vector
Graphics (SVG), an open XML-based W3C standard, as the native format.

Check out their website: http://inkscape.org.

TIFF
You'll have several versions of TIFF available. By default, you'll have TIFF and TIFF-8. As of this
writing, using GeoServer 2.2, GeoTIFF is included in the drop-down list for All Formats.

The GeoTIFF output is the same as a normal TIFF, but includes metadata for describing
geospatial data.

Accessing Layers

[96]

The output format is specified by image/tiff, image/tiff8, or image/geotiff8 as the
format parameter value.

There's more information in the GeoServer documentation:
 � http://docs.geoserver.org/stable/en/user/
services/wms/outputformats.html

 � http://trac.osgeo.org/geotiff

Web Feature Service
Although the result looks completely different, sending requests to WFS works pretty
much the same as the WMS output options, except for the URL format. There are a few big
differences here; notice that the format parameter name changes to outputFormat:

http://localhost:8080/geoserver/topp/ows?
service=WFS&
version=1.0.0&
request=GetFeature&
typeName=topp:states&
maxFeatures=50&
outputFormat=csv

CSV
This is the most common form of data exchange, but not likely the one you'd want to use
unless you're planning to import into a spreadsheet (that is, Microsoft Excel) or for importing
into an external database where other layer output formats don't apply.

The output format is specified by csv as the outputFormat parameter value.

GML (plain text)
This format seems to be overshadowed by the more popular KML format from Google.
The KML format is somewhat based on GML; a GML output file can be converted to KML,
but it's always the other way around. Both formats are XML-based. The most visible reason
is that GML handles basic vector shapes, and KML on the other hand, supports 3D shapes.

The output format is specified by GML2, GML/3.1.1, or GML/3.2 as the outputFormat
parameter value.

Chapter 4

[97]

GML2 (compressed GZIP)
This is the same as GML plain, except as the name implies, it's compressed. This format might
be favored over plain GML outputs where bandwidth is an issue, and data sets are large.

The output format is specified by GML-GZIP as the outputFormat parameter value.

Wikipedia has a good overall history of GML and its usage
(http://en.wikipedia.org/wiki/Geography_Markup_Language).

GeoJSON
This format is a highly-desirable output from GeoServer. GeoJSON is just a JSON-formatted
string, with additional keys for the geospatial data. For example, jQuery has a method called
getJSON to get (local or remote file) parse JSON strings. Let's take a look at that now. The
output format is specified by json as the outputFormat parameter value.

Time for action – parsing GeoJSON
You might want to query GeoServer and parse features in jQuery. We're just parsing a
JSON string.

1. Go to the Layer Preview screen and click on the dropdown for All Formats for the
topp:states layer.

2. Select the GeoJSON option or get the output directly using the following URL. Note
that to limit the results, we are using the featureid parameter. We'll talk about
filters in another chapter.
http://localhost:8080/geoserver/topp/ows?service=WFS&version=1.0.0
&request=GetFeature&typeName=topp:states&featureid=states.1,states
.2,states.3&maxFeatures=50&outputFormat=json

3. Save this output in a text file called states.json.

4. Parse with jQuery. The following is a snippet of the code example included in
this chapter:

<script>
$.getJSON('states.json', function(data) { $.each(data.features,
function(key, val) { $('body').append('properties.STATE_NAME
' + val.properties.STATE_NAME + 'geometry.coordinates ' + val.
geometry.coordinates); }); });
});
</script>

Accessing Layers

[98]

Shapefile
This seems to be the most common output format for GIS data exchange, but it's not so
useful for building web-based maps. If you need to exchange large static data sets with
someone else, then this might be a good option. The output file is a ZIP file containing the
details for the layer. For example, consider this unzipped file for the topp:states layer.

The output format is specified by SHAPE-ZIP as the outputFormat parameter value.

http://localhost:8080/geoserver/topp/ows?service=WFS&version=1.0.0&re
quest=GetFeature&typeName=topp:states&maxFeatures=50&outputFormat=SHA
PE-ZIP

Extra output options
The GeoServer gives you the ability to extend the output options for your data using
extensions. Most of those extensions require additional setup; outside of dropping a
JAR into WEB-INF. Let's look at a few that you might consider.

Chapter 4

[99]

GDAL and OGR output
This is based on the GDAL library, and used for WFS output raster graphics. Using the
ogr2ogr command, you can convert to several output formats. With OGR, you can
convert from one vector format to another. We'll get into examples in future chapters.

Take a look at the following links for more information on GDAL:
 � http://docs.geoserver.org/latest/en/user/data/
gdal.html

 � http://docs.geoserver.org/stable/en/user/
extensions/ogr.html

 � http://www.gdal.org/ogr/ogr_formats.html

TEXT/HTML
One of the ways you can get information from GeoServer about features you click on is by
querying WMS with a point, and getting a list of surrounding features.

The outputFormat format can be anything. The INFO_FORMAT should be text/html.

Time for action – using the GetFeatureInfo freemarker template
1. Go to the OpenLayers demo for topp:states.

2. After the map loads, click on a state. The layer information about that state loads
under the map. Consider the following example for clicking on Alabama:

3. Now examine the URL that was called. The INFO_FORMAT=text/html outputs
features as a HTML string by default:
http://localhost:8080/geoserver/topp/wms?REQUEST=GetFeatureInfo&E
XCEPTIONS=application/vnd.ogc.se_xml&BBOX=-139.848709,18.549282,-
51.852562,55.77842&SERVICE=WMS&INFO_FORMAT=text/html&QUERY_
LAYERS=topp:states&FEATURE_COUNT=50&Layers=topp:states&WIDTH=780&H
EIGHT=330&format=image/png&styles=&srs=EPSG:4326&version=1.1.1&x=4
71&y=201

4. Create new files in $GEOSERVER_DATA/workspaces/topp/states_shapefile/
states called content.ftl, footer.ftl, and header.ftl.

Accessing Layers

[100]

5. Place the following text in the header.ftl file:
<?xml version='1.0' encoding='utf-8'?>
<states>

6. In the content.ftl file, place the text:
<#list features as feature>
 <state>
 <STATE_ABBR>${feature.STATE_ABBR.value}</STATE_ABBR>
 <STATE_NAME>${feature.STATE_NAME.value}</STATE_NAME>
 <SUB_REGION>${feature.SUB_REGION.value}</SUB_REGION>
 </state>
</#list>

7. For the footer.flt file, the text would be simpler:
</states>

8. Go to Server Status | Configuration and catalog and click the Reload button:

9. Click on a state, Alabama for example. The new state information will be shown
below the map.

What just happened?
We changed the default template for the topp:states feature by creating three new files
and added them to workspaces/topp/state_shapefiles/states. We then reloaded
the GeoServer configuration by using the Reload feature in Server Status, or optionally by
restarting GeoServer.

Since GeoServer is setting the output as text/html, you will need to treat the returned
string as text, and then parse to XML before using it in JavaScript.

For more resources, take a look at http://docs.geoserver.org/
latest/en/user/tutorials/GetFeatureInfo/index.html.

Chapter 4

[101]

Have a go hero – changing another layer
Find another layer and create a new template. Explore ways to format this data using
the documentation.

ImageMap
Everyone remembers the days when ImageMaps were commonly used. The idea of using an
image map to describe POIs on your maps seems like a good one.

One of the extensions you can install by just dropping a JAR into $GEOSERVER_HOME/WEB-
INF/lib is ImageMap. The only challenge with this output option is that PointSymbolizer
is represented as circles only, and in most cases you will have icons for features that aren't
circles. The image maps don't always match.

For more information, take a look at http://docs.geoserver.org/
latest/en/user/extensions/imagemap.html.

Using WMS Reflector
This is a great way to preview options in GeoServer without coding a long URL. The reflector
will output PNG (the default), JPEG, PNG8, and GIF. Also, in cases where you don't want to
use GeoWebCache, this is quite useful.

The URL passes a number of parameters to specify what output you want. Most of these will
not be changed. Reflector uses default values for missing parameters. The only parameter
you need to provide is the layers parameter by default. Check out the GeoServer
documentation for more information on these values. There's no need to rehash
them here.

For more information, take a look at http://docs.geoserver.org/
stable/en/user/tutorials/wmsreflector.html.

Accessing Layers

[102]

Time for action – using WMS Reflector
1. Let's use the topp:states layer preview for this example. Enter the following URL

into your browser, or select the JPEG output option from the All Formats drop-down
list on the Layer Preview page. The layer preview URL is quite long:
http://localhost:8080/geoserver/topp/wms?service=WMS&versi
on=1.1.0&request=GetMap&layers=topp:states&styles=&bbox=-
124.73142200000001,24.955967,-66.969849,49.371735&width=780&heig
ht=330&srs=EPSG:4326&format=image/png

2. Now open a new window, or browser tab, and use the Reflector to get the same
results. Just type the following URL in the address bar and then press Enter:
http://localhost:8080/geoserver/wms/reflect?layers=topp:states

3. Now add a new projection from the native EPSG: 4326 to Google Mercator.
EPSG:900913. You will see the image flatten out:

http://localhost:8080/geoserver/wms/reflect?layers=topp:states&srs
=EPSG:900913

What just happened?
We just saved some considerable time for sure. All we needed to provide was the layers
parameter, since that's the minimum, and the Reflector will default to a PNG for its output.

Then we changed the projection to Google Mercator EPSG: 900913. The Reflector does some
heavy lifting for you.

Chapter 4

[103]

Have a go hero – exploring the pdf Reflect option
To output pdf, you'll want to add the format parameter application/pdf, as shown
in the following URL. Want to reproject? Add the srs parameter, most commonly Google
Mercator EPSG:900913:

http://localhost:8080/geoserver/wms/reflect?layers=topp:states&format=
application/pdf&srs=EPSG:900913

Pop quiz – accessing data
Q1. Which output format lets you use your data in the Google Earth interface?

1. The TIFF format, which you can wrap on the globe.

2. The GeoRSS; you can show the data as a pinpoint in Google Earth.

3. The KML, KMZ; you can export your data in the native format of Google Earth.

Q2. Can you have more than an output format for WFS?

1. No, with WFS you can only publish data in the OGC standard, that is, GML.

2. Yes, you can publish the data in different GML releases.

3. Yes, you can publish the data in GML, shapefile, GeoJSON, and CSV.

Summary
That was a quick overview of output options GeoServer offers you.

We talked about the vector outputs such as GeoRSS and GeoJSON. We also talked about
raster outputs formats, such as JPEG and PNG. One of the coolest things we talked a little
about was the Reflector.

In the next chapter, we'll go over some data store options, exposing your geospatial data to
Geoserver, and creating layers.

5
Adding Your Data

In this chapter, we'll take a look at the types of data you can use with
GeoServer. We will have a quick overview of the formats supported, both
built-in and via extensions, and how to add them to your configuration. More
specifically, we will load data from a shapefile, MySQL table, PostGIS table, and
an Oracle table using US census data.

In this chapter, we will cover the following points:

 � Vector data sources

 � Connecting to a MySQL database

 � Connecting to a PostGIS database

 � Connecting to an Oracle database

 � Raster data sources

 � Data source extensions

We're adding data now. Buckle up!

Configuring your data
In Chapter 3, Exploring the Administrative Interface, we covered the administration interface.
Specific to data configuration, we explored workspaces, data sources, and layers. In this
chapter, you will use them to publish new data sets.

Adding Your Data

[106]

Do you remember we already added a shapefile? We are now going to add some more data
using different formats. GeoServer could access some data formats by default, while others
require optional extensions and libraries. The following screenshot shows the default format
GeoServer is shipped with.

According to the types of spatial data we defined in Chapter 1, GIS Fundamentals, you'll have
two types of data sources in GeoServer: vector and raster.

Configuring vector data sources
GeoServer has several built-in vector data sources. Shapefiles and PostGIS are great formats
to store your spatial data.

Adding a properties file
You can store your data in Java properties files. This is a great option if you only have a
handful of features (under 25, for example), and creating a real data store would be overkill.
You can also add features at runtime without the need to recreate or reconfigure the data
store. A properties file is a text file containing a header and a row for each record with
KEY=VALUE pairs. Do you remember the places list in Chapter 1, GIS Fundamentals?
You can publish it in GeoServer with this properties file:

_=id:Integer,code:String,name:String,country:Geometry:srid=4326
places.1=1|Rome|Italy|POINT(12.492 41.890)
places.2=2|Grand Canyon|Usa|POINT(-112.122 36.055)
places.3=3|Paris|France|POINT(2.294 48.858)
places.4=4|Iguazu National Park|Argentina|POINT(-54.442 -25.688)
places.5=5|Ayers Rock|Australia|POINT(131.036 -25.345)

Chapter 5

[107]

Configuring an external Web Feature Service
This data source enables you to add an external WFS server as a data provider. Layers
published by the remote server can be added to your GeoServer and published as WFS
or WMS in a cascading style.

For Drupal developers, you might consider checking out the WFS Drupal project.
It works pretty well for a small number of features. For big data sets, you
should point GeoServer to your relational geospatial database. For most Drupal
developers that would be MySQL. (http://drupal.org/project/wfs)

Adding shapefiles
You can add shapefiles to GeoServer with two data sources. With the first you configure a
folder containing a set of shapefiles and you can also add new ones after the data source is
created. The other data source works the same way as the shapefile directory store, except
you provide a path to just one shapefile.

Time for action – adding shapefiles
You'll notice a lot of results from doing a Google search for shapefiles. This is the most
common format to exchange GIS data sets. Let's download one of those and publish it
as a layer.

1. Download Tiger 2011 county census data as a shapefile and place it in an
appropriate folder:
~/shapes$ wget http://www2.census.gov/geo/tiger/TIGER2011/COUNTY/
tl_2011_us_county.zip

2. Unzip the archive:
~/shapes$ unzip tl_2011_us_county.zip
Archive: tl_2011_us_county.zip
 inflating: tl_2011_us_county.dbf
 inflating: tl_2011_us_county.prj
 inflating: tl_2011_us_county.shp
 inflating: tl_2011_us_county.shp.xml
 inflating: tl_2011_us_county.shx

Adding Your Data

[108]

In fact a shapefile is not a single file. According to specifications
(http://www.esri.com/library/whitepapers/
pdfs/shapefile.pdf), you need at least three files with
shp, dbf, and shx extensions. Although not strictly required,
it is really worthwhile to also have the .prj file. It contains the
SRS definition for the data contained in the shapefile.

3. If you are unsure about SRS of data, have a look at the .prj file. The census data
are in geographic coordinates, the EPSG code is 4269:
~/shapes$ cat tl_2011_us_county.prj
GEOGCS["GCS_North_American_1983",DATUM["D_North_American_1983",SPH
EROID["GRS_1980",6378137,298.257222101]],PRIMEM["Greenwich",0],UNI
T["Degree",0.017453292519943295]]

Do you feel confused with this syntax? If you didn't go through the
Have a go hero section in Chapter 1, GIS Fundamentals, it could be the
right moment to have a look at http://epsg-registry.org.

4. Now open the administration interface, go to the Data | Stores section and click on
Add new Store | Shapefile.

5. Workspace is tiger. Data Source Name is tiger_counties. Description is tiger
counties. For Connection Parameters, click on Browse and select the directory
where you downloaded and unzipped the shapefile:

Chapter 5

[109]

6. Click on Save.

7. On the next screen, click on Publish to start the process of creating a layer:

8. You have to complete some information in the form. Scroll down to the
Coordinate Reference Systems and insert the Declared SRS option as EPSG:4269.
Click on Compute from data and Compute from native bounds in the Bounding
Boxes section:

9. Click on Save.

10. Left navigation to Layer Preview | OpenLayers next to
tiger:tl_2011_us_county.

Adding Your Data

[110]

What just happened?
We downloaded county borders from the US census and unzipped it into the folder called
shapes – our workspace name for the book. We then walked through the steps to create
a new vector data store for shapefile and publish it. With a little effort, the data are now
accessible from a client making a WMS or WFS request. Publishing data in GeoServer is
really straightforward, isn't it?

Using PostGIS
This is the most popular and most capable of all open source relational databases with
spatial capabilities, and its features are constantly increasing. It leverages on PostgreSQL, a
well-known and powerful RDBMS challenging top commercial products such as Oracle. The
current release for PostGIS is 2.0.1 and for PostgreSQL is 9.1.4.

Both have an equally bad reputation of being a hard horse to ride. While fully understanding
all possibilities or dealing with fine tuning may be complicated, using PostGIS as a repository
for your data is not rocket science. Are you wondering where PostGIS is located in the
GeoServer installation? It is not there, but we are just making sure you install it in a few
steps and load some data to play with GeoServer.

If you are eager to learn more than the simple steps we will perform, then
there are two wonderful references to read. Project sites for PostgreSQL and
PostGIS contain a lot of pages ranging from basic to complex topics:

 � http://www.postgis.org/documentation/
manual-2.0/

 � http://www.postgresql.org/docs/9.1/static/
index.html

Time for action – installing PostgreSQL and PostGIS
We are going to transform the census data from shapefile to a PostGIS table. Unless you
already have a PostGIS installation, we will first need to build it up. You can install PostGIS
in several ways, and official and user documentation on customized installation is widely
available. In order to get you started, we will use nice packages freely distributed from
EnterpriseDB™. Apart from choosing the proper binary package, installation runs the
same way on Linux or Windows.

1. The entry point for download is located at http://enterprisedb.com/
downloads/postgres-postgresql-downloads. The PostgreSQL column
contains links to the binary packages for Windows and Linux; choose one
and download it.

Chapter 5

[111]

2. Run the installer.

3. You can go with the default Installation Directory:

4. Go with the default Data Directory too:

Adding Your Data

[112]

5. You can keep things simple on your development box; set postgres as your Password:

6. Don't change the default listening port unless you know it is already binded to
another service:

7. Leave the Locale for DB to Default:

8. And at last we are really starting the installation process. Click on Next and wait until
it completes.

Chapter 5

[113]

9. We have now completed PostgreSQL installation; leave the Stack Builder running
option flagged and click on Finish. Stack Builder is a great option to customize
your PostgreSQL installation. We will use it to add PostGIS:

10. Select your local instance of PostgreSQL and click on Next:

Adding Your Data

[114]

11. Select PostGIS 2.0, or newer, from the available applications in the catalog tree:

12. Stack Builder will now download the PostGIS installer and launch it.

13. After you accept the license agreement, you will be prompted to select
components to be installed. It is a good idea to have the installer create a
spatial database for you:

14. PostGIS installer will find your PostgreSQL location; as you have only one, there is no
need to make any changes here.

15. Insert the password for the postgres user you selected previously, and leave the
default listening port:

Chapter 5

[115]

16. Leave the default name for the spatial database and click on Install:

17. PostGIS is now installed. When prompted for GDAL_DATA settings you should
answer Yes. PostGIS needs data contained in that folder to perform data
reprojection (that is, transforming coordinates from a SRS to another). If you
already have a GDAL installation, you may want to say No here and perform
manual configuration later:

18. Click on Close to dismiss the PostGIS installer and then click on Finish to close
Stack Builder.

What just happened?
We installed PostgreSQL and PostGIS. With these tools you can build a full repository for your
spatial data. We are going to lay the first brick of your geodatabase in the next section. Let's
use PostGIS!

Adding Your Data

[116]

Time for action – loading data in PostGIS and publishing them in
GeoServer

Now that you have a functioning instance of PostGIS, it's time to load some data. We will
keep the same census data used for shapefiles and turn them into a PostGIS spatial table.

1. Start the PostGIS Shapefile Import/Export Manager, an easy tool installed along with
PostGIS. Click on the View Connection details button and insert the parameters
needed to connect to PostGIS:

2. Now, click on the Add File button and browse to the shapefile containing Tiger 2011
county census data. The tool doesn't recognize the SRS contained in the prj file. Set
the value of the field to 4269:

Chapter 5

[117]

3. Click on the Import button and set the encoding to LATIN1 as DBF file
character encoding:

4. Wait while the loader transforms your data and inserts them into a new PostGIS
table. Eventually, you should see a success message in the log textbox. Click on
Cancel to dismiss the loader utility:

5. Now open the administration interface, go to the Data | Stores section, and click on
Add new store | PostGIS.

Adding Your Data

[118]

6. Select tiger for Workspace. Set Data Source Name and Description as myPostGIS.
For Connection Parameters, you need to insert the same values you used with the
loader. For your simple database, you don't need to play with the other settings;
go with default values and click on Save:

7. GeoServer will connect to PostGIS and present you a list with all tables
containing spatial features. Click on the Publish link to the right of the
tl_2001_us_county table.

Are you wondering who created the two tables called
raster_columns and raster_overviews? They are system
tables, used by PostGIS to store metadata for rasters
loaded in the database. Apart from really esoteric
configurations, you won't publish them in GeoServer.

Chapter 5

[119]

8. You now have the same publishing form we used for the shapefile. Note that this
time GeoServer recognizes the native SRID for data. Click on Compute from data
and Compute from native bounds in the Bounding Boxes section.

9. Click on Save and your data is published. You can now see a preview on
Layer Preview | OpenLayers next to tiger:tl_2011_us_county_PG.

What just happened?
We installed PostgreSQL/PostGIS, then loaded the counties data set and published it in
GeoServer. Did you notice that the layer's publishing runs almost the same, whatever the
format of the data is? GeoServer architecture relieves you from details of different data
sources; as long as you have a driver for a specific RDBMS or binary format you can add
data in GeoServer, simply ignoring the actual format.

Adding Your Data

[120]

GUI loader is a great tool, but you may need to load shapefiles on a remote
server, probably with only a remote shell session. Don't be afraid! shp2pgsql
is there to help you. It is a command-line tool, available both on Windows and
Linux editions of PostGIS. In fact, shapefiles are not really loaded by shp2pgsql
but they are translated in a form that psql can keep and load for you. So you just
have to pipe the output to psql:

$ shp2pgsql -s 4269 -g geom -I ~/data/tl_2011_us_
county.shp public.tl_2011_us_county | psql -h localhost
-p 5432 -d postgisDB -U gisuser

The basic set of parameters required are -s to set the spatial reference system,
-g to name the geometric column (useful when appending data), and -I to
create a spatial index. There are quite a few of other parameters that make it a
flexible tool; as usual, -? is your friend if you need to execute a less trivial data
loading. Apart from creating a new table—default option—you can append data
to an existing table, drop it, and recreate or just create an empty table modeling
its structure according to the shapefile data.

Have a go hero – filtering data
PostGIS gives you greater usage flexibility with data. You can process and reuse the data
to produce new data sets. A simple processing is filtering data to show a subset. Let's say
you want to publish a new map of counties, but limited to the state of California. You can
accomplish this in PostGIS with a view. Open PgAdmin, connect to PostGIS, create the view,
and publish it.

Configuring raster data sources
Raster data sources are commonly used to read satellite imagery, scanned maps, and digital
elevation model (DEM). You can add this data as a base layer for your maps.

ArcGrid
This is a proprietary binary format created by Esri and used with ArcGIS. A sample
is included with GeoServer. Check out the arcGridSample data store and the
nurc:Arc_Sample layer.

GeoTiff
A TIFF file is commonly used as the storage format for an aerial picture. A GeoTiff
(http://trac.osgeo.org/geotiff/) is an extension of the TIFF format. It includes
geoSpatial data in the header, an SRS, and the bounding box. Check out the sample data
store called sf:sfdem.

Chapter 5

[121]

Gtopo30
This is a format for DEM developed by the United States Geological Survey (USGS). The 30 in
the name stands for 30 arc seconds, which is the fixed cell size for this format.

ImageMosaic
This data store allows creating a mosaic form of a set of georeferenced images, for example,
a folder of geotiff files. It is commonly used when you want to combine several images
together to create a continuous flowing coverage. This is a pretty advanced topic. Check out
the GeoServer online reference to learn more: http://docs.geoserver.org/stable/
en/user/data/imagemosaic.html.

WorldImage
This is another format originally developed by ESRI. It's a plain ASCII-formatted file
coupled with a raster image. The text file describes how the image is to be used. These are
easily spotted by the tfw (tiff) or jpw (jpeg) file extensions. Some samples are included
with GeoServer. You'll see a data store called worldImageSample and a layer called
nurc:Img_Sample.

Configuring an external Web Map Service
If you know of a remote WMS server that you want to use, this is a good option. You can also
ask the GeoServer to pass this data off to GeoWebCache to get a bump in performance.

Pop quiz – adding data to GeoServer
Q1. Can you add different data formats to GeoServer?

1. No you have to choose a data format and get stick to it.

2. Yes but you can only have vector data or raster data.

3. Yes you can add data for any format available in GeoServer.

Q2. How can you add a set of adjacent raster files?

1. Add a data source for each image and then mash them up in the client.

2. Create a shapefile index and use it as a ImageMosaic data source.

3. Create a shapefile index and add it as a vector data source.

Adding Your Data

[122]

Exploring additional data sources
Several optional formats are supported by GeoServer beyond the built-in data sources. In
the remaining part of this chapter, we will explore a couple of RDBMS quite popular and
supporting spatial data: Oracle and MySQL.

Using Oracle
Oracle is probably the most widely-used commercial RDBMS. It has support for spatial since
release 7, back in 1980's. The current release, 11.2, comes with two flavors of spatial data
extensions, Oracle Spatial and Oracle Locator. They share the same geometry type and basic
set of operators and functions. Oracle Spatial incorporates a richer set of functions for spatial
analysis. Oracle is not free open source software like GeoServer or PostGIS and it has a quite
complicated and expensive license model. We won't cover installation here; as long as you
are going to use Oracle, you should have expertise and/or a proper budget to have it up
and running.

Time for action – adding Oracle support in GeoServer
So you managed to get an Oracle service with spatial data loaded? Well, you are now just
two steps away from victory. We will add the Oracle data source and configure it properly.

1. To add Oracle support, we need to download an extension. Point your browser to
http://geoserver.org/display/GEOS/Stable, locate the Extensions section,
and click on the Oracle link to download the ZIP file.

When adding extensions to GeoServer, pay attention at
the release. You should always match GeoServer and an
extension's releases.

2. Stop Tomcat service. Extract the ZIP file, select the two .jar files and move
them to the webapps/geoserver/WEB-INF/lib folder under the Tomcat
installation folder.

3. Start Tomcat service and then log in to the GeoServer administration interface.
Go to the Data | Stores section and click on Add new store. You can now see
some new options. Select Oracle NG:

Chapter 5

[123]

4. You have to insert the hostname for the Oracle server, the port on which the Oracle
listener is waiting for connection requests (this is 1521 by default but ask your DBA
for exact value). The database is the Oracle instance name, and finally insert a
username and password. schema is an optional parameter; it tells GeoServer
where it should look for spatial data. Click on Save:

5. GeoServer will connect to Oracle and present you a list with all tables containing
spatial features. Clicking on the Publish link to the right of a table will bring you to
the same publication form you used for shapefiles and PostGIS tables.

What just happened?
You added Oracle support to GeoServer. To do this, you copied a couple of JAR files
in the Geoserver installation. The ojdbc14.jar file contains base classes for Oracle
communication and usage and gt-jdbc-oracle-2.7.5.jar is the GeoTools library
for spatial data management.

Using MySQL
You'll find that MySQL is the least popular of the relational databases offering spatial
abilities. Indeed it has only limited support for spatial data. We are going to cover it here as
it is very popular among web developers. Be aware that, unless for PostGIS or Oracle, the
MySQL extension is unmaintained and unsupported. If you encounter bugs, you should be
prepared to fix them yourself or provide funding to do that.

Adding Your Data

[124]

Time for action – adding MySQL data source
As for Oracle, we are assuming here that you already have a MySQL database available.

1. Before we add our MySQL data store, let's get some geospatial data inserted into
MySQL. Get the 6686_05_mysql_usacounties.sql.zip file and unzip it. Create
a new database in MySQL. Call it geoserver.

2. Import 6686_04_mysql_usacounties.sql into MySQL:
mysql --connect_timeout=60 --max_allowed_packet=32MB –u root -p
geoserver < 6686_04_mysql_usacounties.sql

3. To add MySQL support, we need to download an extension. Point your browser to
http://geoserver.org/display/GEOS/Stable, locate the Extensions section,
and click on the MySQL link to download the ZIP file.

4. Stop Tomcat service. Extract the ZIP file, select the two .jar files, and move
them to the webapps/geoserver/WEB-INF/lib folder under the Tomcat
installation folder.

5. Start Tomcat service and then log in to the GeoServer administration interface.
Go to the Data | Stores section and click on Add new store. You can now see
some new options. Select MySQL:

6. Now insert the host name, port for your MySQL server, user, and password.
Click on Save:

Chapter 5

[125]

7. If it was able to connect to MySQL, you should see a list of tables visible
to GeoServer:

8. Clicking on the Publish link to the right of the usacounties table will bring you to the
same publication form you used for shapefiles and PostGIS tables.

What just happened?
We imported a MySQL version of the county data. Then, we created a MySQL data store with
this table. GeoServer discovered this table; we created a layer using the default polygon style
and accepted the other default settings. We viewed the new layer using Layer Preview.

Pop quiz – adding data
Q1. Do I need to purchase an optional plugin to access data inside an RDBMS?

1. Yes, commercial vendor sell data options for GeoServer.

2. No, but you can only use open source RDBMS.

3. No, GeoServer supports most used commercial and open source RDBMS.

Q2. Is the publishing process dependent on the data format?

1. No, GeoServer/GeoTools abstraction layer relieves you from the internal structure
of data.

2. No, but GeoServer can understand only a basic subset of data details.

3. Yes, you need to configure specific parameters for layers build on different
data formats.

Adding Your Data

[126]

Summary
In this chapter we added some data sets to GeoServer. We used different formats for vector
data. It should be now clear to you that as far as there is a data source available, you can
manage different binary formats in GeoServer and mix them together in a map.

Specifically, we covered how to publish shapefiles and PostGIS tables. We then explored
additional extensions and added Oracle and MySQL support to GeoServer.

In the next chapter, we will go forward with data publication. We will cover in detail how to
use styles for rendering spatial features. You will learn how to set proper rules for different
shapes, for example, point or polygon, and how to create styles with symbols reflecting the
attributes' values of each feature.

Let's move on to ways to change the style of the maps using SLD defined styles.

6
Styling Your Layers

In the previous chapters, you learned how to add some data to GeoServer and
you worked with maps by exploring Layer Preview. Also, with really simple
maps, a fundamental process that GeoServer performs is the rendering of
features. This involves assigning a symbol to each feature and applying a set of
rules about how features have to be drawn. Choosing a symbol and how it has
to be applied is the styling process. Styling is really important in web mapping.
A map cannot be rendered without a style associated to the data. When you
configured layers, you were using styles bundled with the GeoServer. In this
chapter, we will explore what the style documents are and how you can create
styles to produce beautiful maps.

We will cover the following points in detail:

 � What style contains
 � What symbol can be used in GeoServer
 � How you can set rendering rules
 � How to edit your styles with the GeoServer web interface and external tools

By the end of this chapter, you'll be able to style layers and also use style rules.

Understanding Styled Layer Descriptor
A map is generally composed of a set of layers. Each layer contains features of a determined
type. When you ask GeoServer for a map, it has to extract features from the repository
(for example, from a shapefile) and draw them according to some rules. Of course, it needs
a repository for storing those rules and hence GeoServer developers need to decide a format
for the storage medium containing rules.

Styling Your Layers

[128]

Map rendering is not just a GeoServer problem; not surprisingly, it is common to all
software-producing maps. Hence, it is not surprising that someone has defined a standard
approach to styling layers. Indeed, GeoServer doesn't use a custom format for styles; instead
it leverages on an OGC standard.

The standard describes the structure of the documents and which rules can be used.
A document containing symbols' definitions and drawing rules is called a Styled Layer
Descriptor (SLD) style and it is a text/XML file (its extension in GeoServer is .sld). SLD
is an XML-based markup language and attached to the standard is an XSD schema that
defines SLD syntax.

If you are curious about the standard, you can find official papers for SLD
at http://portal.opengeospatial.org/files/?artifact_
id=22364 and XSD schemas at http://schemas.opengis.net/sld/.

Editing styles
Being an XML file, you can use different editing tools to edit a style. The first choice should
be your preferred text editor, for example, vi, emacs, or notepad++. Consider that as you add
rules and symbols, things may become fairly complicated. A tool that has highlight syntax for
XML may greatly help you in debugging your styles. Of course, if you are trained to use it, a
specialized XML editor that has support for XSD validation may help further, but usually I find
it overkill.

Talking about editing styles, we shouldn't forget to mention the GeoServer administration
interface. Indeed, GeoServer includes a simple GUI to view and edit XML files containing
style rules. It contains a rich editor and a SLD validator; you got a first look at it in Chapter 3,
Exploring the Administrative Interface.

Apart from XML/text editors, you can also consider a GUI tool to create styles; some open
source Desktop GIS may produce SLD files. For example, QGIS may translate a layer legend
in an XML file. QGIS supports shapefiles, Oracle, and PostGIS layers. After you add them to a
map, you can use a GUI to set color, line width, and other drawing properties. You can then
export your layer symbology in an SLD file.

Have a look at the QGIS project site at http://qgis.osgeo.org/.

Chapter 6

[129]

Exploring the standard structure of a style
If you are going to create your styles with a graphical program hiding the complexity of your
XML code, it is worthwhile to understand the basic syntax and structure of your documents.
You may need to modify the styles after creation and the features you need to add may not
be supported from the program, or simply you are on a server where the only way to edit is
by using a text editor. Besides, you will write XML code in the examples in this chapter.

The first part of a style is always as in the following code fragment:

<?xml version="1.0" encoding="ISO-8859-1"?>
<StyledLayerDescriptor version="1.0.0"
 xsi:schemaLocation="http://www.opengis.net/sld
StyledLayerDescriptor.xsd"
 xmlns="http://www.opengis.net/sld"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

The first line is the XML declaration, and then we have the root element of every SLD
file <StyledLayerDescriptor/>. It contains an attribute declaring the version of the
standard it is using (GeoServer can use 1.0 and 1.1.0 SLD documents), followed by the
namespaces and schema declarations. In the remainder of the chapter, we will omit this part
from our example, for the sake of brevity; but keep in mind it is absolutely mandatory for the
files you are writing.

<StyledLayerDescriptor/> contains a collection of the <NamedLayer/> or
<UserLayer/> elements. Each defines drawing rules for a single layer. Indeed, they
contain a collection of the <UserStyle/> elements.

A <UserStyle/> element contains <FeatureTypeStyle/> if the layer is a vector one,
or <CoverageStyle/> if we are writing rules for a raster.

Both <FeatureTypeStyle/> and <CoverageStyle/>, contain a collection of the
<rule/> element. This is the element where we will define how to draw features and
we will look at its syntax in detail.

Styling Your Layers

[130]

Time for action – viewing GeoServer bundled styles
Before we start to write rules specific to feature types, let's have a look at styles bundled
with GeoServer. You already used them when you added data in the previous chapters.
Let's have a look at those documents and search for the elements we know:

1. Open your GeoServer administration interface at http://localhost:8080/
geoserver/web/ and log in. Then select the Data | Styles item from the left menu:

2. Select the capitals style. The Style Editor window will open up and load the
XML code:

Chapter 6

[131]

3. capitals is a fairly simple example. You can see the mandatory elements required for
a style. There is UserStyle with a single rule defining a circle symbol with a red fill
and a black stroke.

4. Now try to add something wrong. Insert the following code after the <Rule>
element at line 11:
 <Title>This is a clever rule</Title>

Styling Your Layers

[132]

5. Click on the Validate button. GeoServer checks your file and reports an error
occurring where you inserted your code. It complains about line 13 because you
can't have two instances of Name inside a rule:
org.xml.sax.SAXParseException; lineNumber: 13; columnNumber: 18;
cvc-complex-type.2.4.a: Invalid content was found starting with
element 'Title'. One of '{"http://www.opengis.net/sld":Abstract,
"http://www.opengis.net/sld":LegendGraphic, "http://www.opengis.
net/ogc":Filter, "http://www.opengis.net/sld":ElseFilter,
"http://www.opengis.net/sld":MinScaleDenominator, "http://www.
opengis.net/sld":MaxScaleDenominator, "http://www.opengis.net/
sld":Symbolizer}' is expected.

6. Remove the line you inserted and click on the Validate button again. Now GeoServer
shows the following message:
No validation errors.

7. Load some other style and have a look at the syntax. You don't need to fully
understand them; we will cover it in the remaining part of the chapter.

What just happened?
We had a brief look at the GeoServer style editor and the styles bundled. A very important
feature of the style editor is the Validate button. You can compose your styles with an
external tool and have them validated before starting to use them.

Pop quiz – SLD basic elements
Q1. Can you have more than one <StyledLayerDescriptor> element in a style?

1. No, it is the root element and it must be the first one in each style and only one
occurrence can be included.

2. Yes, but only if you are creating a multilayer style.

3. No, it is the child of the root element and can be included only once.

Q2. Can you have more than one <Title> element in a style?

1. No, it defines the title of the style and it can appear only once as child of the
root element.

2. Yes, for example, you can have one as child of both the <UserStyle> and
<Rule> elements.

3. No, it isn't an SLD element; you must use <Name> for descriptive strings.

Chapter 6

[133]

Loading data for styling
We need some data to compose pretty maps. We are going to use the freely available
Natural Earth data set.

Natural Earth provides several data sets in the shapefile format, packaged in three different
reference scales. In the styles examples of this chapter we will use a subset; you need to
download the following data sets:

 � http://www.naturalearthdata.com/http//www.naturalearthdata.com/
download/50m/cultural/ne_50m_populated_places.zip

 � http://www.naturalearthdata.com/http//www.naturalearthdata.com/
download/50m/physical/ne_50m_rivers_lake_centerlines.zip

 � http://www.naturalearthdata.com/http//www.naturalearthdata.com/
download/10m/cultural/ne_10m_roads.zip

 � http://www.naturalearthdata.com/http//www.naturalearthdata.com/
download/10m/cultural/ne_10m_railroads.zip

 � http://www.naturalearthdata.com/http//www.naturalearthdata.com/
download/50m/cultural/ne_50m_admin_0_countries.zip

Save all of them in the same folder and add it as a new data store to your GeoServer
configuration. Refer to Chapter 5, Adding Your Data, for details about data store
configuration. You don't need to publish the shapefiles; if you want to have a first
look at the data, use the default styles. All the data is in geographic coordinates,
WGS84. The SRID is ESPG:4326.

Apart from this data, you may find some resources in the code files accompanying this book
that you can download from the Packt website. Code files contain XML files for all the styles
we will write in this chapter, but I would suggest you take them just as a reference and a
graphic resource used in styling.

Styling Your Layers

[134]

Working with point symbols
We will start our exploration from styles for point features. The Populated places
shapefile perfectly fits our purposes. If you added it with default values, you should
see it rendered with a small red square as shown in the following screenshot:

To modify the map, you need to add a new style and associate it to the layer. For
setting point symbol properties, you have to use the <PointSymbolizer> element
and its children.

Time for action – creating a simple point style
To familiarize you with SLD files creation, we will compose a simple style for using a small red
circle applied to all the point features:

1. Open your favorite text editor. As mentioned previously, we will consider you have
already inserted the XML declaration and the StyledLayerDescriptor part of
the code. So start inserting a NamedLayer element. Then add a Name element and
inside it write the name you want for your layer:
 <NamedLayer>
 <Name>PopulatedPlaces</Name>
 </NamedLayer>

Chapter 6

[135]

2. Now you need to define at least one style for the layer. We use the Title element
to assign a descriptive name to the style:
 <NamedLayer>
 <Name> PopulatedPlaces </Name>
 <UserStyle>
 <Title>Geoserver Beginners Guide: Populated Places simple
mark</Title>
 </UserStyle>
 </NamedLayer>

3. The data you want to apply the styles to are points, hence its vector data. You need
to insert a FeatureTypeStyle element and a Rule for a PointSymbolizer
element that is a style for point data:
 <NamedLayer>
 <Name> PopulatedPlaces </Name>
 <UserStyle>
 <Title>Geoserver Beginners Guide: Populated Places simple
mark</Title>
 <FeatureTypeStyle>
 <Rule>
 <PointSymbolizer>
 </PointSymbolizer>
 </Rule>
 </FeatureTypeStyle>
 </UserStyle>
 </NamedLayer>

4. You have now arrived at the core of our style. The elements you are going to add
define the symbol used to draw the point features. You use a predefined graphic
with the WellKnownName element (options are circle, square, triangle, star, cross,
and x). A Fill element defines the point color with the CssParameter element.
The color is in the form #RRGGBB. Finally, you define how many pixels the circle
should be with the Size element:
 <NamedLayer>
 <Name> PopulatedPlaces </Name>
 <UserStyle>
 <Title>Geoserver Beginners Guide: Populated Places simple
mark</Title>
 <FeatureTypeStyle>
 <Rule>
 <PointSymbolizer>
 <Graphic>
 <Mark>
 <WellKnownName>circle</WellKnownName>

Styling Your Layers

[136]

 <Fill>
 <CssParameter name="fill">#FF0000</CssParameter>
 </Fill>
 </Mark>
 <Size>5</Size>
 </Graphic>
 </PointSymbolizer>
 </Rule>
 </FeatureTypeStyle>
 </UserStyle>
 </NamedLayer>

5. Now save your document as PopulatedPlaces.xml and open Style Editor
in GeoServer.

6. Click on the Add a new style link to open the editor form:

7. Click on the Browse button and go to the folder containing your file and select it.

8. Click on the Upload link next to the Browse button; your file is loaded in the
editor form.

9. Click on Validate to check if you misspelled something. When it returns no errors,
click on the Submit button.

10. Now go to the Data | Layers section and click on ne_50m_populated_places to
open the layer's properties form. Switch to the Publishing tab:

Chapter 6

[137]

11. Go to the Style section and set PopulatedPlaces as Default Style. Click on the
Save button:

12. Go to the Layer Preview section and open up OpenLayers preview for
the PopulatedPlaces layer. Your map should now look as shown in the
following screenshot:

What just happened?
We created a new style for a simple point symbol and assigned it as default to a layer. We
have just started creating custom maps, where you decide how and what has to be drawn.

Time for action – adding a stroke value
Now we will continue exploring point symbology by changing the shape and adding a
stroke value:

1. Take the PopulatedPlaces.xml file, make a copy of it, and name it as
PopulatedPlacesStroke.xml. Edit the new file in your text editor:

2. Go to line 9 and replace the text inside the Name element with the following:
 <Name>PopulatedPlacesStroke</Name>

Styling Your Layers

[138]

3. Go to line 11 and replace the text inside the Title element with the following:
 <Title>Geoserver Beginners Guide: Populated Places square mark
with stroke</Title>

4. Now we will change the shape form used to represent points on map. Go to line 17
and replace the text inside the WellKnownName element with the following:
 <WellKnownName>square</WellKnownName>

5. To add a stroke to your shape, you have to add a Stroke element just after the
Fill element. Insert the following code inside the CssParameter element to set
the color and width of the stroke:
 <Stroke>
 <CssParameter name="stroke">#000000</CssParameter>
 <CssParameter name="stroke-width">1</CssParameter>
 </Stroke>

6. Now save your document and upload it to the Style Editor in GeoServer.

7. Click on Validate to check if you misspelled something. When it returns no errors,
click on the Submit button.

8. Now go to the Data | Layers section and click on ne_50m_populated_places to
open the layer's properties form. Switch to the Publishing tab.

9. Go to the Style section and add PopulatedPlacesStroke to the Selected Styles list.
Click on Save:

Chapter 6

[139]

10. Open the Layer Preview map. Your map is still presenting the simple marker, indeed
you didn't change the default style. Click the button on the top-left of the map to
show the options toolbar:

11. From the Styles drop-down list, select PopulatedPlacesStrokes. Your map will
suddenly be updated with the new point symbol. If you zoom to North America,
it should look as shown in the following screenshot:

What just happened?
We modified a simple style by adding a stroke. You also learnt that a layer may be associated
to more than one style and you can decide which one to use to render maps.

Styling Your Layers

[140]

Time for action – dealing with angles and transparency
When representing a point marker, you can add a rotation angle to those shapes where
it makes sense to. You can also set opacity to make the fill, stroke, or both more or less
transparent. Let's create a new style experimenting with these features:

1. Take the PopulatedPlacesStrokes.xml file, make a copy of it, and name it as
PopulatedRotateTransparent.xml. Edit the new file in your text editor.

2. Go to line 9 and replace the text inside the Name element with the following:
 <Name>PopulatedRotateTransparent</Name>

3. Go to line 11 and replace the text inside the Title element with the following:
 <Title>Geoserver Beginners Guide: Populated Places rotated
mark with transparency</Title>

4. Now we will change the size for marker. Go to line 26 and replace the text inside the
Size element with the following:
 <Size>9</Size>

5. To rotate the marker, add a line after the Size element setting an angle of
45 degrees:
 <Rotation>45</Rotation>

6. After the CssParameter element's fill color setting, add the following line to
set transparency:
 <CssParameter name="fill-opacity">0.35</CssParameter>

7. Save your document and upload it to the Style Editor in GeoServer.

8. Click on Validate to check if you misspelled something. When it returns no errors,
click on the Submit button.

9. Now go to the Data | Layers section and click on ne_50m_populated_places to
open the layer properties form. Switch to the Publishing tab.

10. Go to the Style section and add PopulatedRotateTransparent to the Selected Styles
list. Click on Save.

11. Open the Layer Preview map, and change the style used to
PopulatedRotateTransparent as you did in the previous section.
Your map now shows the rotated square marker with a transparent fill.

Chapter 6

[141]

What just happened?
You learned how to set a rotating angle to markers and set transparency. Step-by-step,
you are discovering how flexible SLD is and how many different symbols you can create
from quite simple shapes. Are you wondering if you can mix them? You can, let's jump to
next section.

Time for action – composing simple shapes
You know you can specify WellKnownName as a marker, but if you need something more
complex you can always merge two or more basic shapes to create a new marker. In the
following steps you will see how to do so:

1. Take the PopulatedPlacesStrokes.xml file, make a copy, and name it as
PopulatedPlacesComplex.xml. Edit the new file in your text editor.

2. Go to line 9 and replace the text inside the Name element with the following:
 <Name>PopulatedPlacesComplex</Name>

3. Go to line 11 and replace the text inside the Title element with the following:
 <Title>Geoserver Beginners Guide: mark composed of three basic
shapes</Title>

Styling Your Layers

[142]

4. Now we will change the size for the square marker. Go to line 26 and replace the
text inside the Size element with the following:
 <Size>10</Size>

5. To compose a complex marker, you need to add other markers as in a pile. Keep
in mind that GeoServer will draw the markers in the inverse order; hence the first
marker you insert in the rule will be at the bottom of others in the map. We want to
have a green circle with a black stroke containing the square marker. Insert a new
PointSymbolizer after the Rule element at line 13:
 <PointSymbolizer>
 <Graphic>
 <Mark>
 <WellKnownName>circle</WellKnownName>
 <Fill>
 <CssParameter name="fill">#00FF00</CssParameter>
 </Fill>
 <Stroke>
 <CssParameter name="stroke">#000000</CssParameter>
 <CssParameter name="stroke-width">1</CssParameter>
 </Stroke>
 </Mark>
 <Size>16</Size>
 </Graphic>
 </PointSymbolizer>

6. Now we want to have a small black circle inside the square. After the closure of the
PointSymbolizer element, at line 43, add a new PointSymbolizer section:
 <PointSymbolizer>
 <Graphic>
 <Mark>
 <WellKnownName>circle</WellKnownName>
 <Fill>
 <CssParameter name="fill">#000000</CssParameter>
 </Fill>
 </Mark>
 <Size>5</Size>
 </Graphic>
 </PointSymbolizer>

7. Save your document and upload it in the Style Editor in GeoServer.

8. Click on Validate to check if you misspelled something. When it returns no errors,
click on the Submit button.

Chapter 6

[143]

9. Now go to the Data | Layers section and click on ne_50m_populated_places to
open the layer properties form. Switch to the Publishing tab.

10. Go to the Style section and add PopulatedPlacesComplex to the Selected Styles list.
Click on the Save button.

11. Open the Layer Preview map and select the PopulatedPlacesComplex style from
the drop-down list. The symbol is quite large, so you may have to zoom out a little
to have a look at it without overlapping.

What just happened?
We created a complex symbol merging three basic markers. Playing with size, colors, and
positions you may think of quite a few possibilities with this technique. But eventually you
will find something too hard to mimic with the markers. Then what do you do? It's time to
use external graphics. Go ahead to the next section.

Styling Your Layers

[144]

Time for action – using external graphics
When merging markers and setting colors and transparency can't help you to realize the
symbol you need, it's time to use external graphics. External graphics are vector or raster
files containing a complex image. The supported formats are the common graphic files you
use in web application such as PNG, JPG, and SVG. The resources are referred to by a URL
so you can store it in your GeoServer data folder, as in this example, or get it from an
online resource:

1. Take the town.svg file from the source code and copy it to the
<GEOSERVER_HOME>/data/styles folder.

2. Take the PopulatedPlacesStrokes.xml file, make a copy, and name it as
PopulatedPlacesGraphics.xml. Edit the new file in your text editor.

3. Go to line 9 and replace the text inside the Name element with the following:
 <Name>PopulatedPlacesGraphic</Name>

4. Go to line 11 and replace the text inside the Title element with the following:
 <Title>Geoserver Beginners Guide: Populated Places with
external graphics</Title>

5. Remove the Mark section (from lines 16 to 25) and insert an ExternalGraphic
element:
 <ExternalGraphic>
 <OnlineResource
 xlink:type="simple"
 xlink:href="town.svg" />
 <Format>image/svg+xml</Format>
 </ExternalGraphic>

6. Change the size to 20:
 <Size>20</Size>

7. Save your document and upload it to the Style Editor in GeoServer.

8. Click on Validate to check if you misspelled something. When it returns no errors,
click on the Submit button.

9. Now go to the Data | Layers section and click on ne_50m_populated_places to
open the layer properties form. Switch to the Publishing tab.

10. Go to the Style section and add PopulatedPlacesGraphic to the Selected Styles list.
Click on Save.

Chapter 6

[145]

11. Open the Layer Preview map and select the PopulatedPlacesGraphic style from
the drop-down list. As in the previous section the symbol is quite large; zoom in
a little on a populated area on earth and your map will look as shown in the
following screenshot:

What just happened?
We used a small vector file to add a complex symbol on a map. Using external graphics will
open your map to an infinite variety of symbols. You can draw your own or search for a
resource file on the Internet, minding the copyright obviously.

After exploring what SLD offers to render point features, you are ready to jump to line
features. Before we continue, it is worthwhile to stop and review what you have learned
with a couple of tests.

Pop quiz – styling points
Q1. Is there a way to modify basic point symbols?

1. No, you may only use external resources.

2. Yes, but only regarding to drawing properties, such as color, size, and tilting.

3. Yes, you can insert code to reshape a basic marker.

Styling Your Layers

[146]

Q2. Can you have more than a symbol inside a rule?

1. No, you may have only a PointSymbolizer element for each rule

2. Yes, for example, you can merge two PointSymbolizer elements to compose
a symbol

3. Yes, but only if you add a query to filter features for each PointSymbolizer

Have a go hero – composing your symbol
Did you like the possibility to add external graphics to your map? You can compose them
on your own. A great open source tool for creating/modifying graphic files is Inkscape. It is
available in binary packages for Linux and Windows and it has an excellent set of tools for
working with vector graphics. You can save your creations in SVG, an XML-based specification
from W3C for vector graphics. Are you ready to use your creative side? Then go to
http://inkscape.org/ and give it a try.

Linestring symbols
Lines are other simple features you can draw on your map. Inside a rule for lines, you have
the <LineSymbolizer> element where you define color, thickness, and also the type of
line to draw (for example, a continuous or a dashed line). As for points, we will start with a
simple symbol and then move to more complex examples.

Time for action – creating a simple line style
We will use a rivers and lake centerlines shapefile from Natural Earth to create a map of the
rivers of the world with a light sky blue color:

1. Take the PopulatedPlaces.xml file, make a copy to Rivers.xml, and then edit
the new file in your text editor.

2. Go to line 9 and replace the text inside the Name element with the following:
 <Name>Rivers</Name>

3. Go to line 11 and replace the text inside the Title element with the following:
 <Title> Geoserver Beginners Guide: Rivers simple stroke </
Title>

Chapter 6

[147]

4. Now, replace the FeatureTypeStyle code (from line 13 to 25) with the following
code. We are using a continuous line, which is the default, setting a width of 2 pixels
and a color:
 <Rule>
 <LineSymbolizer>
 <Stroke>
 <CssParameter name="stroke">#82CAFA</CssParameter>
 <CssParameter name="stroke-width">2</CssParameter>
 </Stroke>
 </LineSymbolizer>
 </Rule>

5. Now save your document and upload it to the Style Editor in GeoServer.

6. Click on Validate to check if you misspelled something. When it returns no errors,
click on the Submit button.

7. Now apply the new style to the 50m-rivers-lake-centerlines layer.

8. Open the Layer Preview map. When you zoom to North America, it should look as
shown in the following screenshot:

What just happened?
We created a new style for a simple line symbol to draw rivers. As for points, there are
several options to draw something prettier than a colored line. As you may have guessed,
you can apply the merging technique that we used for points for lines too.

Styling Your Layers

[148]

Time for action – adding a border and a centerline
On maps, major roads, such as highways, are often represented with a more complex
symbol than a continuous colored line. You are going to use three line symbols to build
a representation of highways:

1. Take the Rivers.xml file, make a copy to Roads.xml, and then edit the new file in
your text editor.

2. Go to line 9 and replace the text inside the Name element with the following:
 <Name>Roads</Name>

3. Go to line 11 and replace the text inside the Title element with the following:
 <Title>Geoserver Beginners Guide: Roads complex symbol</Title>

4. At line 16, set the color to red:
 <CssParameter name="stroke">#FF0000</CssParameter>

5. At line 17, set the width to 5:
 <CssParameter name="stroke-width">5</CssParameter>

6. After line 13, insert a new LineSymbolizer section as in the following code
fragment. Use a width of 7 and set the color to black. The black line will result as a
border on both sides of the line feature.
 <LineSymbolizer>
 <Stroke>
 <CssParameter name="stroke">#000000</CssParameter>
 <CssParameter name="stroke-width">7</CssParameter>
 </Stroke>
 </LineSymbolizer>

7. After line 25, insert a new LineSymbolizer section. Use a width of 1 and set the
color to black. A black line will appear in the center of the line feature.
 <LineSymbolizer>
 <Stroke>
 <CssParameter name="stroke">#000000</CssParameter>
 <CssParameter name="stroke-width">1</CssParameter>
 </Stroke>
 </LineSymbolizer>

8. Now save your document and upload it to the Style Editor in GeoServer.

9. Click on Validate to check if you misspelled something. When it returns no errors,
click on the Submit button.

10. Now apply the new style to the 10m_roads_north_america layer.

Chapter 6

[149]

11. Open the Layer Preview map. The shapefile contains a lot of features and the
symbol is too big for a full zoom map. Zoom into a small area, for example, the Los
Angeles area as shown in the following screenshot:

What just happened?
You learned to create complex line symbols. By merging lines of different sizes and colors,
you can create symbols to represent almost all type of roads you would find on a Rand
McNally© Atlas. But what if you are going to leave for a trip on a railroad?

Time for action – using hatching
Until now we have used standard SLD syntax; you may take the styles and use them on
another map server and it will produce the same maps. But this book is focused on a specific
map server and we can use a vendor option, a small trick that is only available on GeoServer,
to create a symbol that resembles railroads:

1. Take the Rivers.xml file, make a copy to RailRoads.xml, and then edit the new
file in your text editor.

2. Go to line 9 and replace the text inside the Name element with the following:
 <Name>RailRoads</Name>

3. Go to line 11 and replace the text inside the Title element with the following:
 <Title>Geoserver Beginners Guide: RailRoads with hatching</
Title>

Styling Your Layers

[150]

4. Go to line 16 and change the color to black:
 <CssParameter name="stroke">#000000</CssParameter>

5. Go to line 20 and after the end of the Rule element, add another Rule for a
LineSymbolizer element:
 <Rule>
 <LineSymbolizer>
 <Stroke>
 </Stroke>
 </LineSymbolizer>
 </Rule>

6. The rule you added is for the hatching; you need to specify how the hatch line has
to be drawn. Insert the following code fragment inside the stroke element. In the
fourth line, you specify a WellKnownName element to inform GeoServer that the
line has to be drawn perpendicular to the geometric feature. In the 6th and 7th
lines, you set the color to black and width of the hatching line to 1. Finally at
line 10, you set the length of the hatching line.
 <GraphicStroke>
 <Graphic>
 <Mark>
 <WellKnownName>shape://vertline</WellKnownName>
 <Stroke>
 <CssParameter name="stroke">#000000</CssParameter>
 <CssParameter name="stroke-width">1</CssParameter>
 </Stroke>
 </Mark>
 <Size>8</Size>
 </Graphic>
 </GraphicStroke>

7. Now save your document and upload it to the Style Editor in GeoServer.

8. Click on Validate to check if you misspelled something. When it returns no errors,
click on the Submit button.

9. Now apply the new style to the 10m_railroads layer.

10. Open the Layer Preview map. Zoom to a small area and look at the result.

Chapter 6

[151]

What just happened?
You used a vendor option to enable hatching lines. Although this way of styling feature is not
portable, it helps you greatly in composing pretty maps. Let's see another variation for lines
in next section.

Time for action – using dashed lines
On many paper maps, a common symbol for representing roads under construction or
planned is a couple of parallel dashed lines. Can you imagine how to do it with SLD? It
requires a couple of lines merged together with a new SLD element. We will see that
element in this section:

1. Take the Roads.xml file and make a copy to DashedRoads.xml, then edit the new
file in your text editor.

2. Go to line 9 and replace the text inside the Name element with the following code:
 <Name>DashedRoads</Name>

3. Go to line 11 and replace the text inside the Title element with the following code:
 <Title>Geoserver Beginners Guide: Roads under construction
with dashing</Title>

4. Go to line 17 and change the width of the symbol to 5:
 <CssParameter name="stroke-width">5</CssParameter>

Styling Your Layers

[152]

5. Add a line just after the previous line to set dashing for the black lines:
 <CssParameter name="stroke-dasharray">15 10</CssParameter>

6. Go to lines 22-23 and change the color to black and width to 3:
 <CssParameter name="stroke">#FFFFFF</CssParameter>
 <CssParameter name="stroke-width">3</CssParameter>

7. Add a line just after the previous one to set dashing for the black lines:
 <CssParameter name="stroke-dasharray">15 10</CssParameter>

8. Remove the last LineSymbolizer code, from lines 28 to 33. The third line is no
longer needed to represent roads with parallel dashed lines.

9. Now save your document and upload it to the Style Editor in GeoServer.

10. Click on Validate to check if you misspelled something. When it returns no
errors, click on the Submit button.

11. Now go to the Data | Layers section and click on 10m_roads_north_
america to open the layer properties form. Switch to the Publishing tab.

12. Go to the Style section and add DashedRoads to the Selected Styles list.
Click on Save.

13. Open the Layer Preview map and select the DashedRoads style from the drop-down
list. As this is a complex symbol, you have to zoom in to a small area to have a clear
view of how the symbol looks:

Chapter 6

[153]

What just happened?
You built a dashing symbol by merging two lines. But there is more that can be done with
merging; you can mix dashing lines and marker symbols.

Time for action – mixing dashing lines and markers
Natural Earth does not provide a data set for aqueducts, but you might wonder how you can
create an appropriate symbol for representing them. Aqueducts are usually represented in
maps with a dashed line alternated with small circle, all colored light blue:

1. Take the DashedRoads.xml file, make a copy to DashingAndMarkers.xml,
and then edit the new file in your text editor.

2. Go to line 9 and replace the text inside the Name element as:
 <Name>DashingAndMarkers</Name>

3. Go to line 11 and replace the text inside the Title element as:
 <Title>Geoserver Beginners Guide: Aqueducts with dashing and
circle</Title>

4. Go to line 16 and change the setting of the LineSymbolizer element we will use
to represent the dashing line. Set the color to hexadecimal value for light blue, set a
width of 2, and a dasharray of 10 10 to have regularly-spaced dashing:
 <CssParameter name="stroke">#ADD8E6</CssParameter>
 <CssParameter name="stroke-width">2</CssParameter>
 <CssParameter name="stroke-dasharray">10 10</CssParameter>

5. Now delete all the code from line 21 to line 27. We need a totally different
symbolizer, something similar to what we used for hatching.

6. Go to line 23 and insert the following code fragment. You can see that in the 6th
line, we add a WellKnownName element and set it to a circle. Then we set its
color to light blue and width to 1. The circle width is set to 5 to make it larger than
the dashed line:
 <LineSymbolizer>
 <Stroke>
 <GraphicStroke>
 <Graphic>
 <Mark>
 <WellKnownName>circle</WellKnownName>
 <Stroke>
 <CssParameter name="stroke">#ADD8E6</CssParameter>
 <CssParameter name="stroke-width">1</CssParameter>

Styling Your Layers

[154]

 </Stroke>
 </Mark>
 <Size>5</Size>
 </Graphic>
 </GraphicStroke>
 <CssParameter name="stroke-dasharray">5 15</CssParameter>
 <CssParameter name="stroke-dashoffset">7.5</CssParameter>
 </Stroke>
 </LineSymbolizer>

7. Now save your document and upload it to the Style Editor in GeoServer.

8. Click on Validate to check if you misspelled something. When it returns no
errors, click on the Submit button.

9. Now go to the Data | Layers section and click on 50m-rivers-lake-centerlines
to open the layer properties form. We don't really have a layer containing aqueducts
features; we will transform rivers to pipelines! Switch to the Publishing tab.

10. Go to the Style section and add DashingAndMarkers to the Selected Styles
list. Click on Save.

11. Open the Layer Preview map and select DashingAndMarkers style from the
drop-down list. Zoom to North America and check if your map looks as shown in
the following screenshot. Do you see that big aqueduct that covers all the Middle
West lands?

Chapter 6

[155]

What just happened?
We have merged markers, that you learned using point features and lines. It's now time to
switch to the last type of shapes: polygons.

Working with polygon symbols
Polygons are defined by a set of rings, closed linestring, so it is not surprising that you have
the possibility of setting the stroke color and width. By defining a closed area, you may also
set how this area has to be filled. The key element is <PolygonSymbolizer>; include it
inside any rule you are defining for polygons. We will start with a fairly simple example.

Time for action – creating a simple polygon style
Since you were a kid you have been familiarized with the political maps of the world.
Countries were rendered with brown boundaries and there were different colors for each
country. Isn't this a wonderful example for your first polygon styling? We will create a map
with all features rendered with the same color and outline, to start with a simple example,
but we will return to this style in the thematic mapping section:

You may wonder how many different colors you need to build a map where
each adjacent country doesn't share the same color. The answer is not
really trivial, indeed it is a surprisingly little number. Four different colors
are enough for a map with any number of polygonal features. Take a look
at http://en.wikipedia.org/wiki/Four_color_theorem for
more information.

1. Take the Rivers.xml file, make a copy to Countries.xml, and then edit the new
file in your text editor.

2. Go to line 9 and replace the text inside the Name element witht the following:
 <Name>Countries</Name>

3. Go to line 11 and replace the text inside the Title element witht the following:
 <Title> Geoserver Beginners Guide: Countries with outline and
fill</Title>

4. As we are using polygons, you need to change lines 14 and 19 and replace
LineSymbolizer with PolygonSymbolizer:
 <PolygonSymbolizer>
 </PolygonSymbolizer>

Styling Your Layers

[156]

5. Set the outline color to brown and the width to 2:
 <CssParameter name="stroke">#A52A2A</CssParameter>
 <CssParameter name="stroke-width">2</CssParameter>

6. Lines are rendered with stroke but polygons may have a fill defined too.
Insert the following three lines at line 14, after the PolygonSymbolizer starts.
This will set the fill color to a complementary color for brown:
 <Fill>
 <CssParameter name="fill">#29A6A6</CssParameter>
 </Fill>

7. Now save your document and upload it to the Style Editor in GeoServer.

8. Click on Validate to check if you misspelled something. When it returns no
errors, click on the Submit button.

9. Now apply the new style to the ne_50m_admin_0_countries layer.

10. Open the Layer Preview map and zoom to Europe. Your map should look as shown
in the following screenshot:

What just happened?
You built a basic polygon symbol. You may work with outlines much the same way as with
linestrings, applying dashing, transparency, and different colors and widths. We will explore
the different ways of filling polygons in the next section.

Chapter 6

[157]

Time for action – using a graphic filling
Colors may help you in pointing out some areas, but you may need something different.
If you want to represent wooded areas in topographic maps, you can insert many little
markers, each one representing a circle. Patterns of markers are widely used in mapping. As
we did with points and lines, the solution is using an external graphic resource. A bitmap or a
vector, for example, an SVG file, can be used to fill a polygon:

1. Take the Countries.xml file, make a copy to CountriesGraphics.xml, and
then edit the new file in your text editor.

2. Go to line 9 and replace the text inside the Name element with the following:
 <Name>CountriesGraphics</Name>

3. Go to line 11 and replace the text inside the Title element with the following:
 <Title>Geoserver Beginners Guide: Countries with graphics
filling</Title>

4. Take the fill.svg file and copy it to the <GEOSERVER_HOME>/data/
styles folder.

5. Now you need to add a Fill section just inside PolygonSymbolizer, at
line 14:
 <Fill>
 <GraphicFill>
 <Graphic>
 <ExternalGraphic>
 <OnlineResource
 xlink:type="simple"
 xlink:href="fill.svg" />
 <Format>image/svg+xml</Format>
 </ExternalGraphic>
 </Graphic>
 </GraphicFill>
 </Fill>

6. Now save your document and upload it to the Style Editor in GeoServer.

7. Click on Validate to check if you misspelled something. When it returns no
errors, click on the Submit button.

8. Now go to the Data | Layers section and click on ne_50m_admin_0_
countries layer to open the layer properties form.

9. Go to the Style section and add CountriesGraphics to the Selected Styles list.
Click on the Save button.

Styling Your Layers

[158]

10. Open the Layer Preview map and select CountriesGraphics style from the
drop-down list. Zoom to North America and check if your map looks as shown
in the following screenshot:

What just happened?
Working with external graphic lets you build any pattern you may need, but GeoServer offers
you yet another possibility. Go to the next section and see.

Time for action – using hatching with polygons
Hatching a polygon is a different way to produce maps similar to those seen in the previous
example. The pros are that you don't need to search for or build a graphical resource; you
have a set of hatching patterns ready for you. It is also faster for GeoServer to render a map
without using external graphic resources. When it is feasible to achieve the same results with
internal resources, stick to hatching!

1. Take the CountriesGraphics.xml file, make a copy to CountriesHatching.
xml, and then edit the new file in your text editor.

2. Go to line 9 and replace the text inside the Name element with the following:
 <Name>CountriesHatching</Name>

3. Go to line 11 and replace the text inside the Title element with the following:
 <Title>Geoserver Beginners Guide: Countries with hatching</
Title>

Chapter 6

[159]

4. To add code for hatching you need to replace the code of the Graphic element,
from lines 17 to 24. Insert a Mark element where you set the shape to use with
a WellKnownName element (remember that the shape:// notation is only
supported in GeoServer).
 <Graphic>
 <Mark>
 <WellKnownName>shape://dot</WellKnownName>
 <Stroke>
 <CssParameter name="stroke">#29A6A6</CssParameter>
 <CssParameter name="stroke-width">3</CssParameter>
 </Stroke>
 </Mark>
 <Size>16</Size>
 </Graphic>

5. Now save your document and upload it to the Style Editor in GeoServer.

6. Click on Validate to check if you misspelled something. When it returns no
errors, click on the Submit button.

7. Now go to the Data | Layers section and click on the ne_50m_admin_0_
countries layer to open the layer properties form.

8. Go to the Style section and add CountriesHatching to the Selected Styles list.
Click on Save.

9. Open the Layer Preview map and select the CountriesHatching style from the
drop-down list, then zoom to Australia. Can you see how similar hatching is to
using an external graphic resource?

Styling Your Layers

[160]

What just happened?
We used point markers to fill an area enclosed in a polygon. Thanks to the GeoServer
extension, this can be done not only with a limited set of point markers supported by
standard SLD, but also by using the following markers:

 � shape://vertline: A vertical line

 � shape://horline: A horizontal line

 � shape://slash: A diagonal line leaning forwards like the slash (/) keyboard symbol

 � shape://backslash: Same as previous, but oriented in the opposite direction (\)

 � shape://dot: A very small circle with space around it

 � shape://plus: A + symbol, without space around it

 � shape://times: An X symbol, without space around it

 � shape://oarrow: An open arrow symbol

 � shape://carrow: A closed arrow symbol

Pop quiz – styling lines and polygons
Q1. Can you define an outline for lines?

1. No, lines only have the stroke property; you can't have a different form of outline.

2. Yes, you have to define a fill color different from the stroke color.

3. No, lines only have the stroke property, but you can mimic a fill superimposing
another line with a smaller width.

Q2. How can you fill a polygon?

1. You can leave the internal area transparent or fill it with a color.

2. You can use colors and external graphic resources.

3. You can only define a color.

Adding labels
We had a full exploration of styling for geometry features, but how can you represent textual
attributes on maps? As in paper maps, you need a labeling engine and GeoServer provides
you with the right tool. You can add labels to any kind of feature; let's start with points.

Chapter 6

[161]

Time for action – labeling points
You are probably a geography geek and you know what a place name is at the first look at
the map. But maps are not always so expressive and common people tend to get confused
without some reference text. Do you remember the pretty maps you styled with the
Populated Places layer? They would look much better with some labels next to markers:

1. Take the PopulatedPlacesStroke.xml file, make a copy to
PopulatedPlacesLabeled.xml, and then edit the new file in your text editor.

2. Go to line 9 and replace the text inside the Name element with the following:
 <Name>PopulatedPlacesLabeled</Name>

3. Go to line 11 and replace the text inside the Title element with the following:
 <Title>Geoserver Beginners Guide: Populated Places with styled
labels</Title>

4. Go to line 17 and change the marker to a circle:
 <WellKnownName>circle</WellKnownName>

5. Go to line 26 and set the size to 8:
 <Size>8</Size>

6. After PointSymbolizer, add a new TextSymbolizer element. Inside it you have
to specify which field of the layer attributes will be used for extracting text strings
(be aware that the attribute's name is case sensitive). This is done with the Label
element. Then add a Font element to specify which font family GeoServer will use
to draw labels and text properties:
 <TextSymbolizer>
 <Label>
 <ogc:PropertyName>NAME</ogc:PropertyName>
 </Label>

 <CssParameter name="font-family">Arial</CssParameter>
 <CssParameter name="font-size">12</CssParameter>
 <CssParameter name="font-style">normal</CssParameter>
 <CssParameter name="font-weight">italyc</CssParameter>

 </TextSymbolizer>

Styling Your Layers

[162]

7. Now you have to set the position of labels. The position is relative to the point
feature, you add a LabelPlacement element for this. We want to have a label
relative to points on the top-right, so we use an AnchorPoint element, setting it
to 0 and a Displacement element, setting it to 2 pixels along the x axis and 5 pixels
along the y axis:
 <LabelPlacement>
 <PointPlacement>
 <AnchorPoint>
 <AnchorPointX>0</AnchorPointX>
 <AnchorPointY>0</AnchorPointY>
 </AnchorPoint>
 <Displacement>
 <DisplacementX>2</DisplacementX>
 <DisplacementY>5</DisplacementY>
 </Displacement>
 </PointPlacement>
 </LabelPlacement>

8. Eventually you need to set a color for your label. Use a Fill element and
set it to black. Include the following code just after the LabelPlacement section:
 <Fill>
 <CssParameter name="fill">#000000</CssParameter>
 </Fill>

9. Now save your document and upload it to the Style Editor in GeoServer.

10. Click on Validate to check if you misspelled something. When it returns no
errors, click on the Submit button.

11. Now go to the Data | Layers section and click on the ne_50m_populated_
places layer to open the layer properties form.

12. Go to the Style section and add PopulatedPlacesLabeled to the Selected
Styles list. Click on Save.

13. Open the Layer Preview map and select the PopulatedPlacesLabeled style from the
drop-down list, then zoom in to get a better preview of labels.

Chapter 6

[163]

What just happened?
We added pretty labels using the font (be aware that fonts must be available on the
server side), and placement properties.

Time for action – labeling lines
Place names are useful but a road map without a road name, or at least road codes, is almost
useless. You need to get back to the roads style and add code to enable road labeling:

1. Take the Roads.xml file, make a copy to RoadsLabeled.xml, and then edit the
new file in your text editor.

2. Go to line 9 and replace the text inside the Name element with the following
code snippet:
 <Name>RoadsLabeled</Name>

3. Go to line 11 and replace the text inside the Title element with the
following code snippet:
 <Title>Geoserver Beginners Guide: Roads with labels along the
line</Title>

Styling Your Layers

[164]

4. Remove the last LineSymbolizer, from line 26 to 31. We need a simpler symbol
to have a pretty map.

5. Set the width of black line to 4:
 <CssParameter name="stroke-width">4</CssParameter>

6. Set the width of red line to 2:
 <CssParameter name="stroke-width">4</CssParameter>

7. After the last LineSymbolizer, add a new TextSymbolizer element. Inside it,
you have to specify which field of the layer attributes will be used for extracting text
string. (Unfortunately, the Natural Earth road data set does not include road names
so we have to use the state name.) This is done with the Label element. Then add
a LabelPlacement element to specify where the label has to be placed, relative to
the line:
 <TextSymbolizer>
 <Label>
 <ogc:PropertyName>NAME</ogc:PropertyName>
 </Label>
 <LabelPlacement>
 <LinePlacement>
 <PerpendicularOffset>10</PerpendicularOffset>
 </LinePlacement>
 </LabelPlacement>
 </TextSymbolizer>

8. Add a Fill element just after the LabelPlacement section. Set the label
color to black:
 <Fill>
 <CssParameter name="fill">#000000</CssParameter>
 </Fill>

9. Now save your document and upload it to the Style Editor in GeoServer.

10. Click on Validate to check if you misspelled something. When it returns no
errors, click on the Submit button.

11. Now go to the Data | Layers section and click on 10m_roads_north_
america layer to open the layer properties form.

12. Go to the Style section and add RoadsLabeled to the Selected Styles list.
Click on the Save button.

13. Open the Layer Preview map and zoom to a very little area. Open the controls and
select the RoadsLabeled style from the drop-down list. Yes, you are in Virginia!

Chapter 6

[165]

14. Now add some GeoServer extensions. After the Fill element, add an option to
have labels following bending roads and set a maximum angle value for bending.
The maximum displacement of the label sets how many pixels the GeoServer label
engine may shift text to avoid overlapping. The last parameter makes GeoServer
repeat labels every 300 pixels for long roads.

 <VendorOption name="followLine">true</VendorOption>
 <VendorOption name="maxAngleDelta">90</VendorOption>
 <VendorOption name="maxDisplacement">400</VendorOption>
 <VendorOption name="repeat">300</VendorOption>

Styling Your Layers

[166]

What just happened?
You placed labels upon roads with your style. By merging SLD features and options only
available in GeoServer, you can create pretty labels and place them in a well-readable form.

Have a go hero – styling labels for lines
We didn't set a font to road labels, nor did we set any text properties like we did for points.
Can you modify the last style applying text styling? Try on your own and have a look at the
RoadsLabeledStyled.xml file included in the resources of this chapter, if you need
any help.

Time for action – labeling polygons
We will now come back to our countries data set to add labeling to the countries style. While
most of the properties are what we already saw in the labeling of points and lines, we will
add code to make halos around our labels. Halos could enhance readability of labels:

1. Take the Countries.xml file, make a copy to CountriesLabeled.xml, and then
edit the new file in your text editor.

2. Go to line 9 and replace the text inside the Name element with the following
code snippet:
 <Name>CountriesLabeled</Name>

3. Go to line 11 and replace the text inside the Title element with the
following code snippet:
 <Title>Geoserver Beginners Guide: Countries with labels</
Title>

4. Add a TextSymbolizer element just after the PolygonSymbolizer. Inside it,
define the feature field containing the text and the font name and style to draw
the label:
 <TextSymbolizer>
 <Label>
 <ogc:PropertyName>NAME</ogc:PropertyName>
 </Label>

 <CssParameter name="font-family">Arial</CssParameter>
 <CssParameter name="font-size">11</CssParameter>
 <CssParameter name="font-style">normal</CssParameter>
 <CssParameter name="font-weight">bold</CssParameter>

 <TextSymbolizer>

Chapter 6

[167]

5. The placement of polygon labels is very similar to points. After the Font section,
add LabelPlacement and set the AnchorPoint:
 <LabelPlacement>
 <PointPlacement>
 <AnchorPoint>
 <AnchorPointX>0.5</AnchorPointX>
 <AnchorPointY>0.5</AnchorPointY>
 </AnchorPoint>
 </PointPlacement>
 </LabelPlacement>

6. Set the text color to black by adding a Fill section:
 <Fill>
 <CssParameter name="fill">#000000</CssParameter>
 </Fill>

7. After this add a couple of vendor options. The first line ensures that long labels are
split across multiple lines by setting line wrapping on the labels to 50 pixels, and the
second sets 150 pixels as the maximum displacement for places where labels crowd:
 <VendorOption name="autoWrap">50</VendorOption>
 <VendorOption name="maxDisplacement">150</VendorOption>

8. Lastly add the code for halos. We will use a white halo, for maximizing contrast,
with a 3 pixel width around the text:
 <Halo>
 <Radius>3</Radius>
 <Fill>
 <CssParameter name="fill">#FFFFFF</CssParameter>
 </Fill>
 </Halo>

9. Now save your document and upload it to the Style Editor in GeoServer.

10. Click on Validate to check if you misspelled something. When it returns no
errors, click on the Submit button.

11. Now go to the Data | Layers section and click on the ne_50m_admin_0_
countries layer to open the layer properties form.

12. Go to the Style section and add CountriesLabeled to the Selected Styles list.
Click on Save.

Styling Your Layers

[168]

13. Open the Layer Preview map and zoom to Europe. Open the controls and select the
CountriesLabeled style from the drop-down list.

What just happened?
We used standard SLD elements and GeoServer extensions to build pretty labels for the
polygon feature. You may have noticed that, apart from labels, all the styles we created
use the same symbol for all features. It is now time to explore thematic mapping.

Thematic mapping
Very simple maps may be well defined with just one symbol per layer, but this is not the case
for the vast majority of maps you can find, nor for what you will create with your GeoServer.
To fully express the meaning of features, you need to apply a symbology that can make it
easy to recognize different real features on a map. Think of the road layer containing North
America's roads, a map where interstates have a different symbol than is state or federal
road is much more readable. Countries symbolized according to their GDP can be mapped
as the richest area of the world.

There are many different kinds of thematic maps. One of the most common is the choropleth
map; we talked about it in Chapter 1, GIS Fundamentals.

Of course SLD can be used to build choropleth maps; you just have to define a classification
rule and a symbol for each class.

Chapter 6

[169]

Time for action – classifying roads
The roads data set provided by Natural Earth has some attributes that can be used to classify
roads. You may use the CLASS field for thematic mapping, assigning a different symbol to
each class:

1. Take the Roads.xml file, make a copy to RoadsThematic.xml, and then edit the
new file in your text editor.

2. Go to line 9 and replace the text inside the Name element with the following
code snippet:
 <Name>RoadsThematic</Name>

3. Go to line 11 and replace the text inside the Title element with the
following code snippet:
 <Title>Geoserver Beginners Guide: Roads thematic map</Title>

4. The CLASS field contains six different values: Interstate, Federal, State,
Other, Closed, and U/C. We will re-use the symbol for the first value,
Interstate. You need to add a filter inside the rule, so that the symbol will be
applied only to features with the Interstate value in the CLASS field. Add a
Name element inside the Rule element and set it to Interstate:
 <Name>Interstate</Name>

5. Now add a Filter element and use PropertyIsEqualTo to set the filter
operator. PropertyName sets which field to search for and Literal sets the
value to be searched:
 <ogc:Filter>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>CLASS</ogc:PropertyName>
 <ogc:Literal>Interstate</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 </ogc:Filter>

6. Now create a new FeatureTypeStyle element and set its Filter for
Federal roads:
 <FeatureTypeStyle>
 <Rule>
 <Name>Federal</Name>
 <ogc:Filter>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>CLASS</ogc:PropertyName>

Styling Your Layers

[170]

 <ogc:Literal>Federal</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 </ogc:Filter>
 </Rule>
 </FeatureTypeStyle>

7. For Federal roads, use an orange line with black borders:
 <LineSymbolizer>
 <Stroke>
 <CssParameter name="stroke">#000000</CssParameter>
 <CssParameter name="stroke-width">4</CssParameter>
 </Stroke>
 </LineSymbolizer>
 <LineSymbolizer>
 <Stroke>
 <CssParameter name="stroke">#FF7F00</CssParameter>
 <CssParameter name="stroke-width">2</CssParameter>
 </Stroke>
 </LineSymbolizer>

8. Now add a Rule for State roads; use a symbol yellow with black borders:
 <FeatureTypeStyle>
 <Rule>
 <Name>State</Name>
 <ogc:Filter>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>CLASS</ogc:PropertyName>
 <ogc:Literal>State</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 </ogc:Filter>
 <LineSymbolizer>
 <Stroke>
 <CssParameter name="stroke">#000000</CssParameter>
 <CssParameter name="stroke-width">4</CssParameter>
 </Stroke>
 </LineSymbolizer>
 <LineSymbolizer>
 <Stroke>
 <CssParameter name="stroke">#FFFF00</CssParameter>
 <CssParameter name="stroke-width">2</CssParameter>
 </Stroke>
 </LineSymbolizer>
 </Rule>
 </FeatureTypeStyle>

Chapter 6

[171]

9. To remember the old times when paper maps were all you could count on when
driving around the country, we will add a rule for Other roads using a blue symbol
with gray borders:
 <FeatureTypeStyle>
 <Rule>
 <Name>Other</Name>
 <ogc:Filter>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>CLASS</ogc:PropertyName>
 <ogc:Literal>Other</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 </ogc:Filter>
 <LineSymbolizer>
 <Stroke>
 <CssParameter name="stroke">#808080</CssParameter>
 <CssParameter name="stroke-width">4</CssParameter>
 </Stroke>
 </LineSymbolizer>
 <LineSymbolizer>
 <Stroke>
 <CssParameter name="stroke">#0000FF</CssParameter>
 <CssParameter name="stroke-width">2</CssParameter>
 </Stroke>
 </LineSymbolizer>
 </Rule>
 </FeatureTypeStyle>

10. We are not interested in closed roads, so you don't add a rule for them. Add a rule
for U/C, that is, under construction roads, and use a grey dashed line:
 <FeatureTypeStyle>
 <Rule>
 <Name>Under Construction</Name>
 <ogc:Filter>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>CLASS</ogc:PropertyName>
 <ogc:Literal>U/C</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 </ogc:Filter>
 <LineSymbolizer>
 <Stroke>
 <CssParameter name="stroke-dasharray">15 10</
CssParameter>
 <CssParameter name="stroke">#808080</CssParameter>
 <CssParameter name="stroke-width">4</CssParameter>

Styling Your Layers

[172]

 </Stroke>
 </LineSymbolizer>
 </Rule>
 </FeatureTypeStyle>

11. You are done! Save your document and upload it to the Style Editor in GeoServer.

12. Click on Validate to check if you misspelled something. When it returns no
errors, click on the Submit button.

13. Now go to the Data | Layers section and click on the 10m_roads_north_
america layer to open the layer properties form.

14. Go to the Style section and add RoadsThematic to the Selected Styles list.
Click on Save.

15. Open the Layer Preview map and zoom to Houston, Texas. Open the
controls and select the RoadsLabeled style from the drop-down list.
It seems like there are some big plans for new roads around the town!

What just happened?
We made a choropleth road map. It wasn't more difficult than doing a single symbol map,
just a bit longer. Using the Filter element, you can classify your feature and group them
in homogenous sets to which you can apply a single symbol.

Chapter 6

[173]

Have a go hero – styling labels for lines
We didn't set road labels. You can find the road number by clicking on it, but it may be useful
to have labels. I'm sure you can modify the last style by applying what you learned before
about line labeling. If you have any issues, take a look the at RoadsThematicLabeled.xml
file included in the resources of this chapter.

Setting visibility
When you look at Google maps or another web-mapping application, you can see that
the map changes its style according to the zoom level. When you are looking at an entire
continent, symbols are simple and there are a few features drawn on the map. As you get
closer you can see more labels, major roads change their symbols, and minor roads appear.

This approach permits us to insert a large quantity of information on a web map while
avoiding producing an almost unreadable crowd of labels and symbols. As an example, you
can think of a cadastral map containing all USA parcels with a label showing owners. When
you are looking at the entire country, it is impossible to show all this information without
owning a several thousand inches wide display! A good approach would be to just show
the country's boundaries and major roads and places on smaller scales and avoid showing
parcels until you are not so close to see just a county.

The way to build such a map with SLD is by using filters. We will try them out in the
following section.

Time for action – enhancing thematic roads map
In the previous section, we styled a thematic roads map. It is a pretty map, but it lacks
something to be ready for publication. As a user, you would expect roads be drawn
on different scales according to their classification. SLD has elements to define a scale
range where a rule must be applied; they are called MinScaleDenominator and
MaxScaleDenominator. Let's use them!

1. Take the RoadsThematic.xml file, make a copy to RoadsThematicScale.xml,
and then edit the new file in your text editor.

2. Go to line 9 and replace the text inside the Name element with the following
code snippet:
 <Name>RoadsThematicScale</Name>

3. Go to line 11 and replace the text inside the Title element with the
following code snippet:
 <Title>Geoserver Beginners Guide: Roads thematic map with
scale ranges</Title>

Styling Your Layers

[174]

4. We want Interstate roads to appear at any scale, so we leave the first Rule
unchanged. Federal roads will appear only at 1:10,000,000 scale and closer.
Go to line 50 and add following code just after the Filter section:
 <MaxScaleDenominator>10000000</MaxScaleDenominator>

5. Go to line 74 and add a scale condition filter to make State roads only visible from a
1:1,500,000 scale:
 <MaxScaleDenominator>1500000</MaxScaleDenominator>

6. Other and Under Construction roads would only be visible from a 1:500,000 scale.
Go to lines 98 and 122 to add a scale condition filter as:
 <MaxScaleDenominator>500000</MaxScaleDenominator>

7. Save your document and upload it to the Style Editor in GeoServer.

8. Click on Validate to check if you misspelled something. When it returns no
errors, click on the Submit button.

9. Now go to the Data | Layers section and click on the 10m_roads_north_
america layer to open the layer properties form.

10. Go to the Style section and add RoadsThematicScale to the Selected Styles
list. Click on the Save button.

11. Open the Layer Preview map and zoom to scale 1:12,000,000. Open the
controls and select the RoadsThematicScale style from the drop-down list.
As the map redraws, you can see that a lot of roads disappear.

Chapter 6

[175]

12. Zoom in to get closer and you will see that other road classes appear. At 1:376,000
scale, all roads are drawn as in the previous example.

What just happened?
You made road maps much more readable by setting scale range for your feature classes.
Setting scale range is a powerful tool and it is almost always required in maps, unless you are
composing a map with a tiny number of features. Using scale range is quite easy; you just
add it inside your rule.

Besides MaxScaleDenominator, there is another element to set scale range,
MinScaleDenominator. Using them together you can define the upper and lower
scale where a rule has to be applied. You may define two rules for the same layer with
different scale ranges; this way, as the user zooms in or out, the symbols applied to
features will change.

Putting it all together
A common map contains more than a layer, each one styled with one or more symbol
according to its complexity and the map purpose. How can you create a multilayer
document with SLD? Indeed you can't. As the acronym states, an SLD document
can contain a rule relative to just one layer.

By publishing your layers with one or more styles associated on GeoServer, you can compose
a map with an external client supporting a WMS protocol (for example, an OpenLayers
JavaScript client or a desktop GIS such as QGIS).

Styling Your Layers

[176]

Another possibility offered by GeoServer is the layer group. A layer group is a set of layers
with a drawing order. Using layer groups, you can compose and publish a full map. Your
client will have to do a single WMS request to get all the layers.

Time for action – grouping layers
To compose a full map, we will use a couple of styles created in this chapter and one bundled
with GeoServer. We won't create new styles; it is just a matter of selecting layers and setting
map properties:

1. On the GeoServer web interface, go to Data | Layer Groups.

2. Click on the Add new layer group link:

3. Insert the name you would like to give to the new layer group, for example,
myLayerGroup.

4. Select the Add layer… link and choose the states layer from the list:

5. Repeat the previous step to add 10m_roads_north_america and 50m_-rivers-lake-
centerlines layers.

6. In the Coordinate Reference System textbox, insert the EPSG:4326 string. Then click
on the Generate Bounds button.

You could also build a map with a different SRS than that of layers.
In this case, data will be projected at runtime.

Chapter 6

[177]

7. You composed the map, but as you selected the layers, they were added with
their default style. Click on the style name for the roads layer and select the
RoadsThematicScale style, then click on Save.

8. Go to the Layer Preview section and search for your new layer group. Note the
different icon showing you that the item is composed of multiple layers:

9. Explore your map, and zoom in closer to make all roads appear in the map.

What just happened?
We composed a nice starting point for a map of the USA. It has thematic mapping,
scale range, and different layers properly overlapped.

Styling Your Layers

[178]

Have a go hero – composing a full map
You learned a lot about styling in this chapter, and you should now be ready to build your
first real map. Take the layer group created in the last Time for action section and add
populated places with points classified according to the SCALERANK field.

Summary
We had a complete introduction to styling in this chapter. Although there are some features
we didn't explore, you learned techniques that will help you build 90 percent of your maps,
and your comprehension of styling should make you comfortable with looking for more in
rare cases where you need it.

Styles and layers are the building blocks of maps. You are now ready to jump to the
client-side and create a code that can use what you are configuring on your GeoServer.

In the next chapter, we will use the maps you could compose on GeoServer. There are a
few options to build a client application that will be able to deal with WMS protocol. We
will explore client-side JavaScript with some specialized libraries. In detail, we will create
examples using Google Map API, OpenLayers, and LeafLet library.

7
Creating Simple Maps

In the previous chapter you learned how to style your layers. You also composed
maps by combining more layers. It is now time to learn how you can use maps
on the client side.

In this chapter, we will explore how to build client applications with a few
JavaScript frameworks. JavaScript is a powerful and widespread language
and unsurprisingly it is one of the best choices when developing a web
application. We will build some sample maps using Google Maps
API (https://developers.google.com/maps/), OpenLayers
(http://openlayers.org/), and Leaflet (http://leafletjs.com/)—the
new kid on the block. Throughout the chapter we will use a lot of simple yet
useful code examples. We're going to use many of the layers you configured in
the previous chapters.

In this chapter, we will cover the following topics:

 � Google map with GeoServer layer

 � Google map with GeoServer as base layer

 � Google map with GeoServer as base layer and Google as overlay

 � OpenLayers map with GeoServer layer

 � OpenLayers map with GeoRSS

 � Leaflet map

Start up your favorite IDE or text editor. These sample maps will show you how to use
GeoServer layers on your website.

Creating Simple Maps

[180]

Exploring Google Maps API
If you've been reading this book from the beginning, you probably remember that we have
already encountered Google Maps previously, and as a map geek it is almost certain that you
have already used Google Maps.

The web map application uses the Google Maps API, a JavaScript framework that you can
incorporate in your application to build maps. Google Maps API lets you build maps with the
data sets from Google, the same that you can see when using the Google application. In fact,
it also supports the WMS standard, thereby enabling you to get data from any MapServer
compliant with the standard. We'll go over several examples using version 3 of the Google
Maps API, and how to incorporate GeoServer layers.

Let's start with a very simple map.

Time for action – adding a GeoServer layer as overlay
One of the most common things you can do with Google Maps API is use their data set as a
basemap and add a GeoServer layer on top of the basemap.

You will use the sample code of this chapter, which you can download from the Packt
Publishing website.

The Google Maps API doesn't have a method to calculate the BBOX parameters to query
GeoServer's WMS server. So we'll need to calculate those on our own based on the x and y
coordinates and the zoom level:

1. Once downloaded, the sample code has to be installed on your server. We can use
Tomcat as a web server. Unpack the archive in the /webapps/ROOT folder inside
the Tomcat installation folder.

2. Open your browser and point it to
http://localhost:8080/chapter7/index.html.

3. The page shows a list of links to the sample maps that we will use in this chapter.
We will start with a simple map showing the Google basemap with the USA counties
layer on top of it. Click on the GeoServer as overlay link to open the map:

Chapter 7

[181]

4. The map includes standard navigation tools. The map is redrawn each time it is
mapped and/or zoomed, sending requests to the Google servers for the basemap
and to your GeoServer for the USA counties layer.

5. Now we will explore the code. Open the chapter7/google/geoserver_layer/
index.html file in your favorite text editor. The very simple HTML code loads the
Google Maps API at line 10:
 <script type="text/javascript" src="http://maps.google.
com/maps/api/js?sensor=false&language=en"></script>

6. Immediately after this, three other JavaScript files are loaded. base.js and maps.
js are the common files for all Google samples. The base.js file contains values
for the GeoServer location and the layers to load; you can edit them in case you are
using a different configuration. The wms.js file contains some utility functions. The
map.js file is the heart of our map and we will explore it in detail:
 <script type="text/javascript" src="../base.js"></script>
 <script type="text/javascript" src="../wms.js"></script>
 <script type="text/javascript" src="map.js"></script>

Creating Simple Maps

[182]

7. The body tag just contains a placeholder for the map itself and a call to the
mapinitialize function, a JavaScript function included in the map.js file:
 </head>
 <body onload="mapinitialize();">
 <div id="map"></div>
 </body>

8. Now open the map.js file. It includes the code for the mapinitialize function.
We will discuss the relevant section. At the beginning, you find a declaration
for a set of parameters that will be used in the WMS request to GeoServer. The
transparent parameter makes it possible to overlay the GeoServer layer on
the basemap. Also note the SRS parameter that sets the projection to the Web
Mercator value, which is the one used by Google Maps' data sets:
 var wmsparams = [
 "REQUEST=GetMap",
 "SERVICE=WMS",
 "VERSION=1.1.1",
 "BGCOLOR=0xFFFFFF",
 "TRANSPARENT=TRUE",
 "SRS=EPSG:3857",
 "WIDTH=255",
 "HEIGHT=255",
 "format=image/png"
];

9. Just after setting WMS, we set a few parameters for Google Map. Note that we set
the type to roadmap:
 var mapOptions = {
 zoom: 4,
 center: new google.maps.LatL
ng(37.609066626725,-97.423977848479),
 mapTypeControl:false,
 draggableCursor: 'crosshair',
 mapTypeId:'roadmap',
 backgroundColor: "#badbff"
 }

10. Now we create the map object:
map = new google.maps.Map(document.getElementById("map"),mapOption
s);

Chapter 7

[183]

11. And then we define the parameters for the overlay layer. Note the GEOSERVERBASE
and CountyLayer variables that you set previously:
var overlayMaps =[
{
 getTileUrl: function(coord, zoom)
 {
 var lULP = new google.maps.Point(coord.x*256,(coord.
y+1)*256);
 var lLRP = new google.maps.Point((coord.
x+1)*256,coord.y*256);

 var projectionMap = new MercatorProjection();

 var lULg = projectionMap.fromDivPixelToSphericalMercator(l
ULP, zoom);
 var lLRg = projectionMap.fromDivPixelToSphericalMercator(
lLRP, zoom);

 var lUL_Latitude = lULg.y;
 var lUL_Longitude = lULg.x;
 var lLR_Latitude = lLRg.y;
 var lLR_Longitude = lLRg.x;

 if (lLR_Longitude < lUL_Longitude){
 lLR_Longitude = Math.abs(lLR_Longitude);
 }
 return GEOSERVERBASE + "/geoserver/wms?" + wmsparams.join("&")
+ "&layers=" + CountyLayer + "&bbox=" + lUL_Longitude + "," + lUL_
Latitude + "," + lLR_Longitude + "," + lLR_Latitude;

},
tileSize: new google.maps.Size(256, 256),
isPng: true,
maxZoom: 15,
minZoom: 4,
alt: 'Counties'
}
];

Creating Simple Maps

[184]

12. Finally we add all the overlay layers (only one in this case) to the map:
 for (i=0; i<overlayMaps.length; i++){
 var overlayMap = new google.maps.
ImageMapType(overlayMaps[i]);
 map.overlayMapTypes.push(overlayMap);
 map.overlayMapTypes.setAt(overlayMaps[i],overlayMap);
 }

13. We used the default style for the counties layer; although we set it as
transparent, it hides the basemap. Let's use a different style. Return to the
sample maps home page and click on GeoServer as transparent overlay link.
Once the map opens, zoom in to the San Francisco bay area:

14. How does it work? Open the map.js file inside the geoserver_transparent_
layer folder. Go to line 52. Adding a new parameter, sld, does the trick. With it
we can reference an external sld to overwrite the default style:

return GEOSERVERBASE + "/geoserver/wms?" + wmsparams.join("&")
+ "&layers=" + CountyLayer + "&bbox=" + lUL_Longitude + "," +
lUL_Latitude + "," + lLR_Longitude + "," + lLR_Latitude + "&sld="
+ GEOSERVERBASE + "/chapter7/google/geoserver_transparent_layer/
counties.xml";

Chapter 7

[185]

What just happened?
We built a basic Google Map and calculated the bbox parameters to query GeoServer's
WMS server. Just like the other examples in this chapter, you'll see the WMS parameters that
we pass to GeoServer. Another way to do this would be to use the GeoServer reflector, which
can take the x, y, and zoom parameters instead of bbox.

Time for action – adding a GeoServer layer as a base layer
One lesser-known method allows you to use a GeoServer layer as a base layer with Google
Maps, even without a Google Map layer. This example shows you how to use a GeoServer
layer as a base layer:

1. Open your browser and point it to
http://localhost:8080/chapter7/index.html.

2. Then open GeoServer as the base layer link:

Creating Simple Maps

[186]

3. Now look at the map.js file. It is very similar to that of the previous sample, but
in this case we are creating custommap and we are passing the GeoServer's layer
when creating the map object and an overlay:

 //custom base layer options
 var maptypeOptions = {
 getTileUrl: function(coord, zoom)
 {
 var lULP = new google.maps.Point(coord.x*256,(coord.
y+1)*256);
 var lLRP = new google.maps.Point((coord.
x+1)*256,coord.y*256);

 var projectionMap = new MercatorProjection();

 var lULg = projectionMap.fromDivPixelToSphericalMercat
or(lULP, zoom);
 var lLRg = projectionMap.fromDivPixelToSphericalMerca
tor(lLRP, zoom);

 var lUL_Latitude = lULg.y;
 var lUL_Longitude = lULg.x;
 var lLR_Latitude = lLRg.y;
 var lLR_Longitude = lLRg.x;

 if (lLR_Longitude < lUL_Longitude){
 lLR_Longitude = Math.abs(lLR_Longitude);
 }
 return GEOSERVERBASE + "/geoserver/wms?" + wmsparams.
join("&") + "&layers=" + CountyLayer + "&bbox=" + lUL_Longitude +
"," + lUL_Latitude + "," + lLR_Longitude + "," + lLR_Latitude;

 },
 tileSize: new google.maps.Size(256, 256),
 isPng: true,
 maxZoom: 15,
 minZoom: 4,
 alt: ''
 };
 //Create a custom map with base layer options
 var custommap = new google.maps.ImageMapType(maptypeOptions);

 var mapOptions = {
 zoom: 4,

Chapter 7

[187]

 center: new google.maps.LatL
ng(37.609066626725,-97.423977848479),
 mapTypeControl:false,
 draggableCursor: 'crosshair',
 mapTypeId:'mapid',
 backgroundColor: "#badbff"
 }

 //Create a google map using custom base layer
 map = new google.maps.Map(document.getElementById("map"),mapOp
tions);
 map.mapTypes.set('mapid', custommap);
} //end init

What just happened?
You saw an example of how you can use a GeoServer layer as a base layer using the Google
Maps API. Normally you would have specified ImageMapType of ROADMAP, SATELLITE,
HYBRID, or TERRAIN. In our example, we created our own ImageMapType called
custommap.

Using pre-calculated maps
We have already mentioned GeoWebCache. It is a caching software integrated in GeoServer.
We will cover it in detail in Chapter 8, Performance and Caching. Now we will have a look at
how you can use a cached layer with Google Maps.

Time for action – adding a GeoServer cached layer as overlay
Adding a GeoServer cached layer as an overlay is very similar to the other examples,
but in this case we will use the GeoWebCache address as a base tile. We will also use
the gmap service:

1. Open chapter7/index.html in your favorite browser.

2. Click on the GeoServer using GWC and the gmap service example.

3. Open /chapter7/google/geoserver_gwcgmap/index.html and /chapter7/
google/geoserver_gwcgmap/map.js.

4. Review the map.js file:
var map;

function mapinitialize() {

 //custom base layer options

Creating Simple Maps

[188]

 var maptypeOptions = {
 getTileUrl: function(coord, zoom) {
 return GEOSERVERBASE + "/geoserver/gwc/service/gmaps" +
 "?layers=" + CountyLayer + "&zoom=" + zoom + "&x=" +
coord.x + "&y=" + coord.y + "&format=image/png";
 },
 tileSize: new google.maps.Size(256, 256),
 isPng: true,
 maxZoom: 15,
 minZoom: 4,
 alt: ''
 };

 //Create a custom map with base layer options
 var custommap = new google.maps.ImageMapType(maptypeOptions);

 var mapOptions = {
 zoom: 4,
 center: new google.maps.LatL
ng(37.609066626725,-97.423977848479),
 mapTypeControl:false,
 draggableCursor: 'crosshair',
 mapTypeId:'mapid',
 backgroundColor: "#badbff"
 }

 //Create a google map using custom base layer
 map = new google.maps.Map(document.getElementById("map"),mapOp
tions);
 map.mapTypes.set('mapid', custommap);
}

Chapter 7

[189]

What just happened?
As we have seen in the previous Time for action sections, we used the GeoWebCache URI to
cover yet another method to access your layers. This is the method you would likely want to
use on high-traffic web applications. The good thing is that you can easily change the URL to
point to the GeoWebCache as you go to production.

We'll go over the GeoWebCache in future chapters. Remember that you
can pass through WMS using this address too, so use it for WMS queries
as well.

Time for action – customizing Google basemap
Google Maps have a lot of detail, so you might want to come up with a custom Google map
style to overlay over the GeoServer base layer:

1. Open chapter7/index.html in your favorite browser.

2. Click on the GeoServer base layer with the Google layer example.

3. Open /chapter7/source/google/geoserver_baselayergooglelayer/
index.html and /chapter7/source/google/geoserver_
baselayergooglelayer/map.js.

Creating Simple Maps

[190]

4. Review the map.js file:
var map;

function mapinitialize() {

 var wmsparams = [
 "REQUEST=GetMap",
 "SERVICE=WMS",
 "VERSION=1.1.1",
 "BGCOLOR=0xFFFFFF",
 "TRANSPARENT=TRUE",
 "SRS=EPSG:3857",
 "WIDTH=255",
 "HEIGHT=255",
 "format=image/png"
];

 //custom base layer options
 var maptypeOptions = {
 getTileUrl: function(coord, zoom)
 {
 var lULP = new google.maps.Point(coord.x*256,(coord.
y+1)*256);
 var lLRP = new google.maps.Point((coord.
x+1)*256,coord.y*256);

 var projectionMap = new MercatorProjection();

 var lULg = projectionMap.fromDivPixelToSphericalMercat
or(lULP, zoom);
 var lLRg = projectionMap.fromDivPixelToSphericalMerca
tor(lLRP, zoom);

 var lUL_Latitude = lULg.y;
 var lUL_Longitude = lULg.x;
 var lLR_Latitude = lLRg.y;
 var lLR_Longitude = lLRg.x;

 if (lLR_Longitude < lUL_Longitude){
 lLR_Longitude = Math.abs(lLR_Longitude);
 }
 return GEOSERVERBASE + "/geoserver/wms?" + wmsparams.
join("&") + "&layers=" + CountyLayer + "&bbox=" + lUL_Longitude +
"," + lUL_Latitude + "," + lLR_Longitude + "," + lLR_Latitude;

Chapter 7

[191]

 },
 tileSize: new google.maps.Size(256, 256),
 isPng: true,
 maxZoom: 15,
 minZoom: 4,
 alt: ''
 };

 //Create a custom map with base layer options
 var custommap = new google.maps.ImageMapType(maptypeOptions);

 var mapOptions = {
 zoom: 4,
 center: new google.maps.LatL
ng(37.609066626725,-97.423977848479),
 mapTypeControl:false,
 draggableCursor: 'crosshair',
 mapTypeId:'mapid',
 backgroundColor: "#badbff"
 }

 //Create a google map using custom base layer
 map = new google.maps.Map(document.getElementById("map"),mapOp
tions);
 map.mapTypes.set('mapid', custommap);

 //add all the custom overlays we want.
 var overlayMaps =[
 {
 // Google Roads layer
 getTileUrl: function(coord, z) {
 var x = coord.x % (1 << z);
 var y = coord.y;

 return "http://mt0.google.com/vt/v=apt.116&hl=en-
US&x="
 + x + "&y=" + y + "&z=" + z + "&src=apiv3&s=G&lyrs=
r&apistyle=s.t:33|p.v:off&apistyle=s.t:49|s.e:l|p.v:on|p.l:50|
p.s:24,s.t:5|p.v:off,s.t:6|p.v:off,s.t:1|p.v:off,s.t:5|p.v:off-
,s.t:2|p.v:off"
 },
 tileSize: new google.maps.Size(256, 256),
 isPng: false,
 maxZoom: 18,
 name: "Roads",

Creating Simple Maps

[192]

 alt: "Custom Roads"
 }
];

 //add all overlays to the map
 for (i=0; i<overlayMaps.length; i++){
 var overlayMap = new google.maps.
ImageMapType(overlayMaps[i]);
 map.overlayMapTypes.push(overlayMap);
 map.overlayMapTypes.setAt(overlayMaps[i],overlayMap);
 }
} //end init

What just happened?
We created a custom Google Maps overlay using a Google map style to the base GeoServer
map. The Google layer is displayed as you zoom into the map.

This add-on Drupal module uses OpenLayers to do the same thing. Check
out the GitHub project README.md for details on how to use it at
https://github.com/brianyoungblood/google-map-styled.

Chapter 7

[193]

Have a go hero – creating a custom Google map layer
Create your own custom Google map layer using the Google Maps API-styled wizard. Use
Firebug to get the needed URL parameters (http://gmaps-samples-v3.googlecode.
com/svn/trunk/styledmaps/wizard/index.html).

Interacting with the user
Publishing a beautiful map is a good starting point for your site, but you probably want to
have some interaction with your users. JavaScript, and many frameworks built on it, gives
you a lot of ways to customize your interface and how to react to a user action. We will see
a short example in the next section.

Time for action – intercepting the Click event
If you want to query your GeoServer's WMS, you need to get the latitude and longitude.
You can use this example map:

1. Open chapter7/index.html in your favorite browser.

2. Click on the Google lat/lng on click event example.

3. Open /chapter7/source/google/geoserver_latlonclickevent/index.
html and /chapter7/source/google/geoserver_latlonclickevent/map.
js.

4. Review the map.js file:
var map;
var geocoder;
var overlay;

function mapinitialize() {

 //add all the overlays we want
 var overlayMaps =[
 {
 // Google Roads layer
 getTileUrl: function(coord, z) {
 var x = coord.x % (1 << z);
 var y = coord.y;
 return "http://mt0.google.com/vt/v=apt.116&hl=en-
US&x="
 + x + "&y=" + y + "&z=" + z + "&src=apiv3&s=G&lyrs=
r&apistyle=s.t:33|p.v:off&apistyle=s.t:49|s.e:l|p.v:on|p.l:50|
p.s:24,s.t:5|p.v:off,s.t:6|p.v:off,s.t:1|p.v:off,s.t:5|p.v:off-
,s.t:2|p.v:off"

Creating Simple Maps

[194]

 },
 tileSize: new google.maps.Size(256, 256),
 isPng: false,
 maxZoom: 18,
 name: "Roads",
 alt: "Custom Roads"
 }
];

 //custom base layer options
 var maptypeOptions = {
 getTileUrl: function(coord, zoom) {
 return GEOSERVERBASE + "/geoserver/gwc/service/gmaps"
+
 "?layers=" + CountyLayer +"&zoom=" + zoom + "&x=" +
coord.x + "&y=" + coord.y + "&format=image/png";
 },
 tileSize: new google.maps.Size(256, 256),
 isPng: true,
 maxZoom: 15,
 minZoom: 4,
 alt: ''
 };

 //Create a custom map with base layer options
 var custommap = new google.maps.ImageMapType(maptypeOptions);

 var mapOptions = {
 zoom: 4,
 center: new google.maps.LatL
ng(37.609066626725,-97.423977848479),
 mapTypeControl:false,
 draggableCursor: 'crosshair',
 mapTypeId:'mapid',
 backgroundColor: "#badbff"
 }

 //Create a google map using custom base layer
 map = new google.maps.Map(document.getElementById("map"),mapOp
tions);
 map.mapTypes.set('mapid', custommap);

 //need a overlay object to get the object being clicked on
using the click listener. this is a google api v3 requirement
 overlay = new google.maps.OverlayView();

Chapter 7

[195]

 overlay.draw = function() {};
 overlay.setMap(map);
 //end overlay object

 //add all overlays to the map
 for (i=0; i<overlayMaps.length; i++){
 var overlayMap = new google.maps.
ImageMapType(overlayMaps[i]);
 map.overlayMapTypes.push(overlayMap);
 map.overlayMapTypes.setAt(overlayMaps[i],overlayMap);
 }

 //click listener
 google.maps.event.addListener(map, 'click',
 function(event) {
 var point = overlay.getProjection().fromLatLngToContai
nerPixel(event.latLng);
 alert("latlng: " + event.latLng + "\npoint: " +
point);
 }
);
}

Creating Simple Maps

[196]

What just happened?
The key here is to create an overlay object and call the getProjection() method. This
is something new for version 3 of the Google Maps API. This is useful for sending the latitude
and longitude to GeoServer to query for the features.

Using OpenLayers
Google Maps API is not the only option for developing a JavaScript mapping application.
OpenLayers is one of the oldest and frequently used frameworks. It is an open source
project constantly maintained and developed by a growing crowd of enthusiast developers.
As you've noticed, it is used with the GeoServer previews.

Copying the OpenLayers previews don't do much good, so let's go over some basics
with OpenLayers.

Time for action – integrating GeoServer and OpenLayers
Once again, let's dive into the source code and see how OpenLayers works with GeoServer:

1. Open chapter7/index.html in your favorite browser.

2. Click on the OpenLayers Basic Map example:

Chapter 7

[197]

3. Open chapter7/openlayers/geoserverbase/index.html and /chapter7/
openlayers/geoserverbase/map.js. The index.html file is very similar to
the previous one. The difference is the loading of the OpenLayers API code:
<script type="text/javascript" src="http://openlayers.org/
api/2.12/OpenLayers.js"></script>

4. The map.js file is quite different. First we define the map options, that is, bounds
and projection:
var map;

function mapinitialize() {
 var bounds = new OpenLayers.Bounds(
 -180.0, -90.0, 180.0, 90.0
);

 var options = {
 maxExtent: bounds,
 projection: 'EPSG:4326',
 units: 'degrees'
 };

5. Then we create a new map object:
 map = new OpenLayers.Map('map', options);

6. Create a new layer object and define its parameters:
 var countries = new OpenLayers.Layer.WMS(
 CountriesLayer, GEOSERVERBASE + '/geoserver/NaturalEarth/
wms',
 {
 layers: CountriesLayer,
 format: 'image/png'
 }
);

7. Eventually we add it to the map and center it on the USA:
 map.addLayer(countries);
 map.zoomTo(4);
 map.panTo(new OpenLayers.LonLat(-95.0,40.0));
}

Creating Simple Maps

[198]

8. Of course a map with a single layer is almost useless. Let's add the layers of rivers
and lakes from Natural Earth. Add the following code lines after the countries
layer definition:
 var rivers = new OpenLayers.Layer.WMS(
 RiversLayer, GEOSERVERBASE + '/geoserver/NaturalEarth/
wms',
 {
 layers: RiversLayer,
 transparent: 'true'
 },
 {
 isBaseLayer: false,
 }
);

 map.addLayer(countries);
 map.addLayer(rivers);

9. Now open the map sample:

Chapter 7

[199]

What just happened?
We created a basic OpenLayers map using GeoServer to serve as tiles. This is a good place
to start when we want to use OpenLayers with GeoServer, as the GeoServer previews don't
work if you copy and paste them into your own applications.

Time for action – using GeoRSS with OpenLayers
We're going to show a number of features represented as points:

1. Open chapter7/index.html in your favorite browser.

2. Click on the OpenLayers GeoRSS example.

3. Open /chapter7/openlayers/georss/index.html and /chapter7/
openlayers/georss/map.js.

4. Review the map.js file:
var map, rss;

function mapinitialize() {

 map = new OpenLayers.Map('map', {
 maxResolution:'auto',
 projection: 'EPSG:4326'
 });
 layer = new OpenLayers.Layer.WMS(
 CountyLayer, GEOSERVERBASE + "/geoserver/tiger/wms",
 {
 LAYERS: CountyLayer,
 format: 'image/png'
 }
);
 map.addLayer(layer);
 map.zoomTo(9);
 map.panTo(new OpenLayers.LonLat(-73.99, 40.75));
 addGeoRSS();
}

function addGeoRSS() {

Creating Simple Maps

[200]

 var value = GEOSERVERBASE + '/geoserver/tiger/wms?service
=WMS&version=1.1.0&request=GetMap&layers=tiger:poi&styles=&bb
ox=-74.0118315772888,40.70754683896324,-74.00153046439813,
40.719885123828675&width=427&height=512&srs=EPSG:4326&format=
application%2Frss%2Bxml';
 var georss = new OpenLayers.Layer.GeoRSS('Tiger POI', value);
 map.addLayer(georss);
}

What just happened?
We're still viewing the counties data for the basemap, but we've overlayed the Tiger POI
layer using the GeoRSS output format. Remember to use ProxyPass to avoid any XSS
errors when serving example files from a different URL than your GeoServer.

Check out the examples for GeoRSS for more information, at
http://openlayers.org/dev/examples/georss.html.

Chapter 7

[201]

Exploring Leaflet
The Leaflet project came out of the depths of OpenLayers. It's still young and being
developed, but many desktop and mobile developers are moving towards a more compacted
library that's easy to implement and understand. Mobile devices are given equal attention
with bug fixes and features. These examples will work well on iOS, Android, and other
HTML5 mobile browsers.

Time for action – using Leaflet with GeoServer layers
Check out the sample code folder for a quick example of Leaflet:

1. Open chapter7/index.html in your favorite browser.

2. Click on the Leaflet basic map example.

3. Open /chapter7/leaflet/index.html and /chapter7/leaflet/map.js.

4. Review the map.js file:
var map;

function mapinitialize() {

 counties = new L.TileLayer.WMS(GEOSERVERBASE + "/geoserver/
tiger/wms",
 {
 layers: "tiger:tl_2011_us_county",
 format: 'image/png',
 transparent: true,
 attribution: ""
 });

 rivers = new L.TileLayer.WMS(GEOSERVERBASE + "/geoserver/
NaturalEarth/wms",
 {
 layers: "NaturalEarth:50m-rivers-lake-centerlines",
 format: 'image/png',
 transparent: true,
 attribution: ""
 });

 populatedplaces = new L.TileLayer.WMS(GEOSERVERBASE + "/
geoserver/NaturalEarth/wms",
 {

Creating Simple Maps

[202]

 layers: "NaturalEarth:ne_50m_populated_places",
 format: 'image/png',
 transparent: true,
 attribution: ""
 });

 map = new L.Map('map',
 {
 center: new L.LatLng(30.609, -87.424),
 zoom: 6,
 layers: [counties,rivers,populatedplaces],
 zoomControl: true
 });
}

What just happened?
The shortest of the examples is the Leaflet map. We use the gmap service, which is
something not often found in the other examples online. This allows you to use the XYZ
format without translating a bounding box, as shown in the other examples. You can
also use this GeoServer service with the Google Maps API.

Chapter 7

[203]

For more information take a look at the Leaflet project on GitHub:
https://github.com/CloudMade/Leaflet.

Pop quiz – creating mapping apps
Q1. Can you use any programming language for building a map client?

1. No, you may only use JavaScript/HTML.

2. Yes, you can use any language/framework supporting HTTP requests.

3. Yes, but you should build a web application.

Q2. When building a JavaScript application, can you mix more than one mapping framework
(for example, OpenLayers and Leaflet)?

1. No, you have to select one and stick to it.

2. Yes, for example, if you want to integrate Google Maps data in an
OpenLayers-based app.

3. It is technically possible but it is a bad idea and you won't gain any advantages from
using more than one framework.

Summary
By now, you should be able to select among several choices to build your web-based
GeoServer maps.

Specifically, in this chapter, we covered how to use Google Maps API to show a GeoServer
layer as a base layer and an overlay. We also covered OpenLayers and Leaflet, two open
source projects that offer you a ready-to-use framework. OpenLayers, at the moment, is
considered more powerful but a little bit harder to learn. Leaflet is really straightforward
to use and its capabilities are growing more and more.

In the next chapter, we will cover the cached layers in detail. We will describe why caching
is important and how can you configure it in GeoServer. We will also explore the integrated
GeoWebCache that ships with GeoServer in greater detail.

8
Performance and Caching

In previous chapters, you learned how to style layers for composing maps. Then
you built a JavaScript code snippet, exploring several possibilities for including
maps in your web application.

Whatever technology you prefer, or are constrained to use, you will have to
submit a GetMap request to GeoServer. For each request GeoServer has to
perform a complex set of operations: loading data, applying styles, rendering
the result to a bitmap, and pushing it back to the client who performed the
request. As your web application gains popularity, more and more concurrent
requests will be added and you may run out of resources to satisfy them all.

Having to build the map from scratch every time does not make sense,
especially if your web application does not offer the user the possibility to
modify styles for layers. In many cases, the styles are defined just once, or very
rarely, updated. So your GeoServer instance will render lots of identical maps.

This is, of course, a great place to do something to boost performance. As with
other web document sharing the keyword here is caching.

Indeed when you are requesting a map to GeoServer, chances are that the
same map was already produced before. We need a procedure to store
and retrieve maps when needed and to match them for equality. This is a
more general problem, not specifically linked to GeoServer. Several systems
to implement map caching exist. Earlier GeoServer releases didn't include
any caching mechanism and you had to set software in front of GeoServer,
intercepting map requests and forwarding only those that can't get a hit from
the cache to GeoServer.

Performance and Caching

[206]

In his chapter, we will cover the following topics in detail:

 � What GeoWebCache is and how you can use it

 � Setting general parameters for integrating GWC

 � Configuring new gridsets

 � Configuring tile layers

Exploring GeoWebCache
A prominent member of the tile map caching software family is GeoWebCache
(http://geowebcache.org/), a Java open source project. Just as any caching
system, it acts as a proxy between the clients and the map server. If you use the
standalone version, your map server can be any that is in compliance with WMS
standard. Indeed, GeoWebCache uses the WMS syntax to retrieve tiles from the
map server. It exposes the tiles in several ways; with the GeoServer integrated
version you can use the following:

 � WMS (Web Mapping Service)

 � WMS-C (WMS Tiling Client Recommendation)

 � WMTS (Web Map Tiling Service)

 � TMS (Tile Map Service)

You can use an external instance of GeoWebCache, disabling the one that is included,
but there are many advantages in using the internal one. You can use a single interface to
administer both GeoServer and GeoWebCache and you don't have to use a custom URL or
a special endpoint; all the layers you publish on GeoServer are automatically configured as
cached. You just have to set the caching properties on layers and layer groups.

Time for action – configuring GeoWebCache storage
Running the GeoWebCache shipped with GeoServer is very simple. All the layers are already
configured for caching; we just need to modify some details of the configuration.

1. Caching will produce a lot of files, and storage requires quite a lot of space on your
disk. By default, all the files are stored on the same filesystem where you installed
GeoServer. A common issue is that you can run out of free space or available inodes
on Linux filesystems. The result is the same: you won't be able to store anything
more on the filesystem and you may also crash your system. We are going to use
a custom location for cache files.

Chapter 8

[207]

2. Locate your webapps folder inside the Apache Tomcat installation folder:
~$ cd /opt/apache-tomcat-7.0.27/webapps/

3. Go to the geoserver/WEB-INF folder:
/opt/apache-tomcat-7.0.27/webapps$ cd geoserver/WEB-INF/

4. Open the web.xml file and locate the line containing the following code:
<display-name>GeoServer</display-name>

5. After this, there are several parameters defined. We will insert a new parameter to
set the GeoWebCache folder location. You can enter the following code just after
the previous line. The param-value syntax is valorized with a folder location that is
valid on the Linux filesystem. On a Windows filesystem, use proper syntax.
<!-- Setting GeoWebCache folder -->
 <context-param>
 <param-name>GEOWEBCACHE_CACHE_DIR</param-name>
 <param-value>/opt/gwc</param-value>
 </context-param>

6. Save the file and close it.

7. Now go to the Tomcat Manager Application to reload GeoServer. The parameters
that you change from the web administration interface don't need a reload to be
effective. GeoServer reads the web.xml file on startup, so any changes to the file
are effective only after an application reload.

8. Open your browser and enter the URL,
http://localhost:8080/manager/html/list.

9. Locate GeoServer in the application list and click on the Reload button:

10. After a while, depending on the complexity of your configuration, a success message
will appear:

Performance and Caching

[208]

11. Now, go to the Tile Layers section on the web administration interface of GeoServer
and browse through the list to find the NaturalEarth:ne_50_m_populated_places
layer:

12. From the drop-down list, select a combination of SRS and image format
(for example, EPSG:4326/jpeg); a new map preview will show up in the
browser window.

This preview is not the same as the one you can access from the Layer
Preview page. While both use JavaScript code with the OpenLayers
library, the latter is optimized to use the integrated GeoWebCache.

13. Navigate the map by panning and zooming it. Each operation will request tiles from
GeoWebCache. For the first time you use it, they have to be requested to GeoServer
and stored for future reuse.

14. Now close the map and click again on the Tile Layers link in the administration
interface. Going to the row that shows information for your layer, you can see
that there is now a number showing the disk storage used by tiles:

15. Open a system console and go to the folder you configured for GeoWebCache in
step 5. You should see that it contains a folder for the tiles of the layer:
/opt/gwc$ ls -al

total 32

drwxr-xr-x 5 root root 4096 Sep 30 18:12 ./

drwxr-xr-x 4 root root 4096 Sep 25 21:37 ../

drwxr-xr-x 2 root root 4096 Sep 30 17:48 diskquota_page_store/

-rw-r--r-- 1 root root 406 Sep 27 00:33 geowebcache-diskquota.xml

-rw-r--r-- 1 root root 4879 Sep 25 21:55 geowebcache.xml

drwxr-xr-x 2 root root 4096 Sep 30 17:48 meta_jdbc_h2/

drwxr-xr-x 8 root root 4096 Sep 30 18:18 NaturalEarth_ne_50m_
populated_places/

Chapter 8

[209]

16. Open the folder and check whether the folder content actually uses the size that
GeoServer showed you:

/opt/gwc/NaturalEarth_ne_50m_populated_places$ du -sh

1.4M .

What just happened?
You configured the storage location for your tiles. By default, GeoWebCache stores them in
the temp folder located inside Tomcat installation location. For production site, it is a good
idea to use a folder on a different device. Also, try to avoid storing tiles on the same disk
where the data is stored.

Time for action – configuring Disk Quota
Whether you prefer seeding your layers or you just set the cache on and wait for your
clients' requests to populate it, the tiles can grow to a huge number of files and sizes. The
folder configured for containing them may fill and you may run the filesystem on a shortage
of resources. By default, the integrated GeoWebCache comes with unlimited disk usage
for cached tiles. It is a good practice to configure it to a known value and to set a policy
for tiles recycling.

1. From the GeoServer administration interface go to Disk Quota under the Tile
caching section:

Performance and Caching

[210]

2. As you can see, there is an upper limit for cache size, that is, 500.0 MB, but the
Enable disk quota flag is unchecked; you might wonder what happens when your
cache size hits the limit. Set the limit at 5 megabytes and click on the Submit button.

3. Now go to the Tile layers form and open the cache preview for myLayerGroup,
which you created in Chapter 6, Styling Your Layers. Browse the map, panning and
zooming a little, until you see that the layer's cache size exceeds 5 megabytes
(you have to manually refresh the interface for the new size value to show up).

4. What will be shown now is the Disk Quota form. Go back to it and you will see that
all your tiles are there, the total size is over the upper bound and the maximum size
value acts just as a warning.

5. Now check the Enable disk quota flag and click on the Submit button. Go back to
the Disk Quota form; all your tiles are now gone. This is because 5 megabytes is a
very low limit and tiles are marked for removal in groups.

6. Now you will set the parameters to more realistic values. The first parameter is the
block size used by the filesystem where you are storing tiles. The provided default
is quite common, but if you are unsure you can check it. For example, on Linux you
may use the dumpe2fs utility:
/opt/gwc$ sudo dumpe2fs -h /dev/mapper/ubuntu1204x64vm-root | grep
'Block size'

dumpe2fs 1.42 (29-Nov-2011)

Block size: 4096

7. Then you may want to set the time interval for GeoWebCache performing checks on
the cache size. Although 10 seconds is a good trade–off, you might want to insert a
higher value as a very low value will degrade performance.

Chapter 8

[211]

8. Now you have to set the upper limit for your cache size. This depends on how many
layers you have to cache and, of course, on how much space is available. If you are
using a non-dedicated filesystem for your tiles, consider that there may be other
processes creating temporary objects on the filesystem and select a conservative
value that leaves at least 20 percent of the filesystem always free. On the other
hand, if you have a dedicated filesystem for your cache you may insert a value near
to 99 percent of the total size. Avoid setting it to a value equal to the size of the
filesystem, as filling it completely may produce weird errors and corruption. We
assume here that you are fine with a 5 gigabyte cache size.

9. Lastly, you have to choose the criteria for tile removal when the upper limit is hit.
The default option selects Least frequently used, which is usually a good choice
as long as your site contains a static set of layers. If you frequently add new layers,
there is a chance that older layers are used less, so select the Least recently
used option.

10. Now that all the parameters are valorized, you can click the Submit button:

What just happened?
You completed the storage configuration for GeoWebCache. Now you are ready to review
general settings and layer parameters.

Performance and Caching

[212]

Setting caching defaults
As mentioned previously, the included GeoWebCache comes with a default configuration.
From the web interface you can manage almost all parameters; this is a brand new feature
of the GeoServer 2.2 release. In earlier releases, you had to go to the GeoWebCache web
interface or open the configuration files.

The Caching Defaults form includes general parameters. The first section is about services
used to expose tiles.

Direct integration
By default, the first option is disabled. Direct integration is about the endpoint used in WMS
GetMap requests. If you go with the default option, you will have to use a custom endpoint
to tell GeoServer that you want to retrieve a map from the cache, if there are tiles available
to fulfill your request.

http://localhost:8080/geoserver/gwc/service/wms?

Enabling direct integration lets you use the same syntax you would use against a
non-cached layer:

http://localhost:8080/geoserver/<workspace>/wms?tiled=true

Apart from the endpoint, there are a set of conditions that a request has to meet in order to
use tiles from the cache. We will explore both methods in a later section querying layers with
an OpenLayers-based application.

WMS-C
The second option listed is for the WMS-C service. WMS-C is the acronym for Web Mapping
Services Cached. It is the default way to query for tiles and is available at the endpoint.

http://localhost:8080/geoserver/gwc/service/wms

Chapter 8

[213]

If you disable the option when performing a request to the endpoint, you will receive a
Service is disabled message and a 400 (Bad request) HTTP response code from GeoServer.

TMS and WMTS
These two options enable endpoints specific to the TMS (Tiled Map Services) and WMTS
(Web Map Tiled Services). Both are OGC standards for retrieving tiled maps; the main
difference is the incorporation of a query by location request (GetFeatureInfo) in WMTS.
The endpoints are as follows:

http://localhost:8080/geoserver/gwc/service/tms/1.0.0
http://localhost:8080/geoserver/gwc/service/wmts?

Default layers options
The next section is about parameters for layers.

By default, each time you add a layer on GeoServer it is configured for caching. Configuring
a layer for caching doesn't use space on your cache storage, until someone starts requesting
maps of it. You may consider removing this option if, on your site, you are going to add a
large number of frequently updated layers. Note that disabling this flag you should manually
enable caching for the layers.

As you did in Chapter 6, Styling Your Layers, you can configure more than one style for your
layers; by default all the styles are enabled to be cached. If you add a lot of styles but only
one is important, you may want to avoid wasting space in your cache storage and store only
tiles rendered with the default style.

Performance and Caching

[214]

The default metatile size sets dimensions of the map produced by GeoServer when it gets
a request for a tile not already stored in cache. By default, the map produced is composed
of 16 tiles. When a request hits a tile not stored, a GeoWebCache sends a GetMap request
for a map with dimension equal to 4x the tile's height size and 4x the tile's width size. Once
produced, the map is sliced and each tile is stored in the GeoWebCache repository. Using
a metatile is useful to reduce a layer's seeding time and for label placement. When you ask
GeoWebCache to seed a layer (we will discuss this in detail later), all the tiles are produced,
so a lot of GetMap requests are sent to GeoServer. It is much more efficient to produce larger
maps and then slice them, than producing a lot of tiny maps.

With regards to label placement, you have to consider that GeoServer's labeling engine
places the label according to the map's dimension. So with bigger maps you have a small
chance of label duplication and overlapping.

So you may wonder why the default metatile size is not bigger than a mere 4 x 4. The
problem is that when producing a map's memory, the consumption grows proportionally to
the map's dimensions; having a big metatile size may produce errors in caching. According
to the memory resource on your installation, you may increase the size but be careful with
a metatile size higher than 8 x 8.

The gutter size defines an extra edge on the map used for label and feature placements. The
edges won't be rendered in the map but setting it larger than zero may help reducing the
label's conflicts.

In the Default Tile Image Formats for section, you can set those formats you want to enable.
It is a good idea to go with the default here as png8 (an 8-bit color depth version of PNG) and
gif are not much used in web mapping.

Default Cached Gridsets
This section shows the gridsets that will be automatically configured for cached layers. A
gridset is a schema for tiles; it contains CRS, tile dimensions, and zoom levels.

We will see how to create custom gridset in the very next paragraph.

By default there are two gridsets configured for all layers. They are the ones most commonly
used in web mapping:

 � EPSG:4326 (geographic) with 22 maximum Zoom levels and 256 x 256 pixel tiles

 � EPSG:900913 (spherical Mercator) with 31 maximum Zoom levels and 256 x 256
pixel tiles

Chapter 8

[215]

Configuring gridsets
Gridsets are caching schemas. When you decide to store tiles for a layer, you have to define
the common properties for the tiles set. The logical entities where you store those properties
are the gridsets.

The properties you can configure in a gridset are the CRS, the tile sizes in pixels, the number
and scale of zoom levels, and the bounds of the gridset. Once you define a gridset and bind
it to a layer, your client requests must conform to the caching schema, that is, the gridset or
GeoWebCache will be unable to fulfill your request.

For your convenience, GeoServer comes with a common gridset already configured.

Time for action – creating a custom gridset
In Chapter 5, Adding Your Data, we add the tiger county shapefiles. The CRS for this is
EPSG:4269. If we want to create a cache for it without projection, we need to create a
specific gridset.

1. In the GeoServer web interface, select the gridset URL on the left panel.

2. GeoServer will show you a list of existing gridsets. Click on the Create a new
gridset link:

Performance and Caching

[216]

3. In the creation form, you have to insert the values for creating parameters. Choose a
name for the new gridset; using the CRS is a good idea so insert EPSG:4269.

4. In the Coordinate Reference System section, enter EPSG:4269. The Units and
Meters per unit parameters are updated from GeoServer as it retrieves the
projection parameters. Please note that we inserted the same string in the title and
CRS textbox but they have completely different meanings; the title is just a label
that you can set to a string convenient for you, while the CRS has to be a value
recognized from GeoServer projection engine:

5. Click on the Compute from maximum extent of CRS link; the gridset bounds will be
automatically calculated by GeoServer. If you want your gridset limited to a smaller
extent, you may manually insert values in the textboxes. As we are going to use this
gridset for the USA inland counties, we will enter custom bounds values as shown in
the following screenshot:

6. Each gridset must have a fixed tile size. GeoServer will prompt you to have the
default values of 256 x 256 pixels; this is usually a good choice so we will leave it
unchanged. Note that you may want to set a smaller or greater size and you can
also have rectangular tiles, but you might run into trouble with clients requesting
your tiles.

Chapter 8

[217]

7. You now have to set the zoom levels for your gridsets. Keep in mind that when using
cached maps, you are constrained to pre-calculated zoom levels. Here you have the
opportunity to set what and how many they are. Creating levels is quite simple; first
you need to decide how many levels you need. Click on the Add zoom level link.
A new line is added showing you the level's parameters. The first column shows
you the level's index (the list is zero based) and then you find Pixel Size. GeoServer
calculates first level for having a single row of tiles covering all of your layer extent.
Optionally, you may set a name for the level. In the Tiles column, you can see how
many tiles would compose the levels; the syntax is column x rows. The red symbol at
the end of the row lets you remove a level.

8. Keep adding levels until you add level 10. As you can see each level is calculated
doubling the columns and the rows, hence it contains 4x the tiles of the previous
level. The total number of tiles grows fast; at level 10 you already have almost
2 million tiles, plus those of the other levels:

9. Now click on the Save button. The gridset is added to the list. You may also want
to add a custom gridset to the default gridset list, but this is not the case with the
EPSG:4269 that we created for the county layer.

Performance and Caching

[218]

10. Now go to the layer panel and select the tiger:tl_2011_us_county. In the
Configuration form, go to the Tile Caching tab. At the end of the page, there is the
Gridset section; here you can configure the available gridsets for your layer. Please
note that all the default settings we configured in the previous paragraph may be
overridden in the layer configuration. From the drop-down list, select the EPSG:4269
gridset you just created, then click on the plus symbol on the right:

11. The new gridset is added to the list of those available for your layer. Note that you
can optionally have only a subset of the levels published and/or cached.

What just happened?
We created a new gridset with custom properties for caching a specific layer and a specific
area of the world. You can have as many gridsets as you need for your layers. Please
remember that clients requesting maps shall conform to the gridset's properties
(for example, tile sizes), otherwise you will get an error from GeoWebCache.

Configuring tile layers
From the web interface, you can access the Tile layers section. All the layers published on
GeoServer and configured for caching are listed in this section, and you can review the status
and the main parameters for each layer.

Chapter 8

[219]

The first two columns display the Type and Layer Name, and the third is for per layer Disk
Quota. In GeoServer 2.2, the per layer disk quota is not checked and cannot be configured
as in the GeoWebCache standalone version, so you can only see an N/A value here. The next
column contains the size occupied on disk by the layer's tiles.

The next column shows you if the layer, configured for caching, is enabled to store tiles in the
cache. Disabling caching on a layer without removing it from cached layers is useful when
you want to temporarily disable layers from caching without losing the configuration.

If caching is enabled on a specific layer, you see a drop-down list with the gridsets associated
to that layer, and by clicking on it you can open a new web page with a preview application.
It is very similar to the page raised by the layer preview list, but it ensures that the request
conforms to the caching schema, that is, the gridset and maps that are requested are
retrieved from the cache.

Eventually you find the link to Seed or Truncate one or more levels of the cache.

The Empty link will erase all tiles for that specific layer, including all gridsets and styles.

Time for action – configuring layers and layer groups for
caching

By default, each layer you publish on GeoServer is added to GeoWebCache's configuration.
If your layer contains data that is updated very often, caching may be a bad idea. You would
waste space to store tiles that will soon become outdated. Let's see how to configure caching
on a specific layer.

1. From the web interface, open the Tile layers section.

2. Scroll the list to find the NaturalEarth:10m_roads_north_america layer and click on
the layer name.

3. The layer configuration page opens with a focus on the Tile Caching tab.

Performance and Caching

[220]

4. The very first section contains flags for inserting layers among the cached layers
and for enabling caching. If you uncheck the first radio button, all the other settings
become unavailable, and the caching configuration is lost. By default, unless you
modified the Caching Defaults section, all layers added to GeoServer configuration
are also configured as cached layers.

5. Metatiling factors, gutter size, and image formats let you override the values set for
these parameters in the Caching Defaults section. For example, you may want to
increase metatiling sizes and gutter sizes on layers where labeling is really critical.
Acting on a per layer basis avoids stress on overall performance.

6. The next section lets you choose whether GeoWebCache will create a separate
cache for each style associated to the layer. You can also set a separate cache for
time and elevation. These options make sense only if you configured time and
elevation support.

Time and elevation configurations are out of the scope of this
book. You can configure them in the Dimension tab of the layers
web page. Note that your data, raster or vector, should have
attributes holding meaningful time or elevation values.

Chapter 8

[221]

7. You can set which gridset will be used for caching your layer. By default, both the
gridsets defined in the Caching Defaults section are enabled. You can add others or
remove the defaults. You can also set zoom levels for each gridset that you want to
be published and/or cached:

What just happened?
You reviewed all the options available for fine tuning on cache configuration. While caching
defaults are fine for having a working set of properties, each time you add a new layer, you
should configure it to maximize performance and optimize disk space.

Time for action – using tiles with OpenLayers
Now that you know how to manage caching configuration, we will explore how to use it. In
this section, you will use an OpenLayers client to consume cached layers. You had a look at
OpenLayers library in the previous chapter, but if you are not yet an expert, don't worry, we
will guide you to fully understand the basic code of the following example:

1. We will create a new HTML file. It should be published with Apache Tomcat, so you
can create it in the webapps/ROOT folder inside your Tomcat installation.

2. Insert the following code. As we are creating an HTML file, the code contains some
mandatory elements. We also want to include a title for our page:
<html>
 <head>
 <title>Creating a simple map</title>
 <meta http-equiv="Content-Type" content="text/html;
charset=UTF-8">

Performance and Caching

[222]

3. Now add the following CSS code to add a style to the html element that will host
the map canvas:
 <style type="text/css">
 #myMap {
 clear: both;
 position: relative;
 width: 750px;
 height: 450px;
 border: 1px solid black;
 }
 </style>

4. Now we have to include a reference to the OpenLayers library. We use a reference
to the online release. Note that this only works if you are connected to the Internet
in your development environment; otherwise you may want to download the library
and deploy it on Tomcat:
 <script type="text/javascript" src="http://openlayers.org/
api/2.12/OpenLayers.js"></script>

5. Now add the code to create a map object. We first create a mapOptions collection
to set some map properties, that is, the projection, the extent, and the units.
Take note of the first parameter passed to Map constructors in the last line;
it is a reference to a dom element where the map will be placed:
 <script type="text/javascript">
 function init() {
 var mapOptions = {
 projection: "EPSG:4326",
 maxExtent: new OpenLayers.Boun
ds(-180.0,-90.0,180.0,90.0),
 units: "degrees"
 };
 map = new OpenLayers.Map('myMap', mapOptions);

6. Now you have to add a layer object. We create it by pointing to
ne_50m_populated_places. We pass some properties to the
constructor, for example, for using a different style from default:
 demolayer = new OpenLayers.Layer.WMS(
 'NaturalEarth:ne_50m_populated_places', '../geoserver/
NaturalEarth/wms',
 {layers: 'NaturalEarth:ne_50m_populated_places',
 styles: 'PopulatedPlacesStroke',
 format: 'image/png' },
 {singleTile: 'True'}
);

Chapter 8

[223]

7. Then, we add the layer to the map and add code to set a zoom level and center the
map on a specific point:
 map.addLayer(demolayer);
 map.zoomTo(4);
 map.panTo(new OpenLayers.LonLat(12.0,42.0));
 }
 </script>
 </head>

8. The JavaScript code for the page is complete. Now add a call to the init function
when the browser loads the page and a div element for the map:
 <body onload="init()">
 <div id="myMap"></div>
 </body>
</html>

9. Save the file as wmsPlain.html. Now open your browser and enter
http://localhost:8080/wmsPlain.html as the URL.

10. Now zoom and pan a little with the map, then go to the Tile layers web page and
look if the map produced by your requests was stored as a map:

11. It seems like your requests are not stored in the cache. Can you identify what went
wrong? Think about it before going ahead with the exploration.

Performance and Caching

[224]

12. Go back to the folder where you saved the wmsPlain.html file, make a copy of it,
and rename the copy to wmsExplicitCached.html.

13. Open the new file with your editor, go to line 3, and replace it with the following:
 <title>Creating a simple map for cached layers</title>

14. For a GetMap request to hit the cache, you have to constrain it to the gridset
properties. We are using the EPSG:4326 projection, so we need to use the same
zoom levels of the EPSG:4326 gridset. Go to line 18 and just after it add a new item
to mapOptions. It contains all resolutions for the gridset:
 resolutions: [
 0.703125, 0.3515625, 0.17578125,
 0.087890625, 0.0439453125, 0.02197265625,
 0.010986328125, 0.0054931640625, 0.00274658203125,
 0.001373291015625, 0.0006866455078125, 0.0003433227539062,
 0.0001716613769531, 0.0000858306884766, 0.0000429153442383,
 0.0000214576721191, 0.0000107288360596, 0.0000053644180298,
 0.0000026822090149, 0.0000013411045074, 0.0000006705522537,
 0.0000003352761269
],

You don't really need to add all the zoom levels to your maps;
you can select a subset of them. This way you can constrain
your user to explore data only at a specific zoom range.

15. Our request needs to be directed to the GeoWebCache endpoint. Go to line 33 and
modify the layer creator as in the following code fragment:
 demolayer = new OpenLayers.Layer.WMS(
 'NaturalEarth:ne_50m_populated_places',
 '../geoserver/gwc/service/wms',

16. We also need to match the tile sizes. On line 30 replace the singleTile: 'True'
line of code with the following:
 {tileSize: new OpenLayers.Size(256,256)}

17. Save the file. Now open your browser and enter http://localhost:8080/
wmsExplicitCached.html as the URL. As before, navigate your maps by panning
and zooming around the world, then go back to the Tile layers web page and see if
your tiles are stored in the cache.

Chapter 8

[225]

As you can see from the Disk Used value, this time your requests
matched the gridset properties and the tiles produced were stored
properly. Are you wondering how to check exactly what your
requests are requests and what responses you are getting from
GeoWebCache?
There are several tools/techniques that you can use to do this; a
widely used and popular one is Firebug. Firebug is Firefox's extension
that offers you a powerful set of tools for developing and debugging
web apps. In our case, you can use the web console to see complete
details about requests and responses for your application.
More info is available at https://www.getfirebug.com.

Performance and Caching

[226]

18. We need to go a step further. Do you remember we talked about direct integration?
Go back to the Caching defaults section and check the flag. Then click on the
Save button.

19. Go back to the folder where you saved the wmsExplicitCached.html file, make a
copy of it, and rename the copy to wmsDirectIntegrationCached.html.

20. Open the new file with your editor, go to line 3, and replace it with the following:
 <title>Creating a simple map for cached layers with direct
integration</title>

21. Our request needs to be directed to the GeoServer WMS endpoint. Go to line 33
and modify the layer creator as in the following code fragment:
 demolayer = new OpenLayers.Layer.WMS(
 'NaturalEarth:ne_50m_populated_places',
 ' ../geoserver/NaturalEarth/wms',

22. On line 37, just after the style setting, add a code to specify the map request that
has to be tiled:
 styles: 'PopulatedPlacesStroke',
 tiled: 'true',

23. Save the file and close it.

24. Go to the Tile layers page and click on the Empty link for the
NaturalEarth:ne_50m_populated_places layer. When prompted
about deleting all tiles click on the OK button.

Chapter 8

[227]

25. Save the file. Now open your browser and point it to http://localhost:8080/
wmsDirectIntegrationCached.html. As before, navigate your map's panning
and zoom around the world, then go back to the Tile Layers web page and see if
your tiles are stored in the cache again.

What just happened?
You built a very simple web mapping application and integrated it with GeoWebCache. Apart
from the trivial interface, you explored how to properly build map requests that can access a
cache. You can use this knowledge to apply caching in real application.

Have a go hero – building a client for tiger county layer
In the previous Time for action – creating a custom gridset section, you built a custom
gridset. You named it EPSG:4269 and added to the tl_2011_us_county layer's
configuration. It is now time to use it. Based on the JavaScript code of the previous
Time for action – using tiles with OpenLayers section, build a simple application using
the cache for the layer. Just in case you need some hints, you can have a look at
wmsExplicitCached4269.html file in the chapter's resource.

Time for action – seeding a layer
As of now we have used the GeoWebCache for storing tiles produced by user request. Of
course following requests with equal parameters will hit the cache and GeoServer won't
render a new map for them.

But you can also pre-calculate the tiles for a layer to avoid some users experiencing a delay
when requesting zoom levels and areas not yet cached.

The process of pre-calculating tiles is called seeding. This section will guide you to
understand how it works.

1. Go to the Tile layers page and look for the tl_2011_us_county layer. Click on the
Seed/Truncate link for it:

Performance and Caching

[228]

2. A new page will open. The GeoWebCache seeding is not integrated in the GeoServer
web interface. What you see is the GeoWebCache interface:

3. Scroll to the Create a new task section. You have to set the parameters for the
seeding. The first one is the number of parallel processes, that is, threads that will
request maps to GeoServer. As we have a single GeoServer instance, there is no gain
in running too many processes. Select 04 from the drop-down list:

4. Then select the operation type. You can select Seed, which will generate only the
missing tiles, or Reseed to regenerate all tiles. This is the case if you changed the
style for the layer and don't want your user to see a mixed map. Note that the
Truncate operation is a little different from the Empty operation integrated in the
GeoServer interface. Here you will have the option to select a set of zoom levels for
truncating, while the Empty operation will always remove all tiles. Select Seed –
generate missing tiles:

Chapter 8

[229]

5. You have to select a gridset and an image format for the seeding. If you want to
pre-calculate cache for more than one gridset and/or image format, you can start
another operation just after starting this. Select Grid Set as EPSG:4269 and Format
as image/png:

6. You can start a seeding operation only on a subset of the specified gridset. You
can select a levels range and an area. If you don't want to restrict seeding to a
specific area, leave the Bounding box textboxes empty, and the operation will use
the gridset bounds. Select 00 as Zoom start: and 10 as Zoom stop:. Now start the
seeding operation by clicking on the Submit button:

Performance and Caching

[230]

7. Once the tasks start, the web interface shows you the list of currently running
tasks. If you are seeding more layers concurrently, you can filter the tasks per layer
and also kill one or all the tasks that are running. Clicking on the Refresh list link
will update the list with the number of Tiles completed, Time elapsed, and Time
remaining columns. The number of tiles grows quickly at more detailed zoom levels.
Seeding not only requires a lot of disk space, it also requires a lot of time, depending
on your system's capacity.

8. When your tasks end, you should see an empty list. Go back to the Tile layers page
and now there will be a lot of disk space allocated for your layer's tiles:

What just happened?
Seeding your layers can have a huge impact on performances. Every map request from
your clients, in the levels range you pre-calculated, will hit the cache now. You can expect
performances to increase from 10 to 90 times.

Pop quiz – configuring integrated GeoWebCache
Q1. Can you have more than one gridset for a layer?

1. No, you have to select one caching schema for each layer.

2. Yes, you can add any gridsets you need and use them concurrently.

3. Yes, but you can store tiles in the cache for just one gridset.

Chapter 8

[231]

Q2. Can you cache a layer with more than one style?

1. Yes, you can store tiles rendered with several different styles.

2. No, you have to configure the same data as a new layer to use a different style.

3. Yes, but you can't use the same layer with different styles concurrently in the same
map request.

Q3. Can your client use both cached and plain layers?

1. No, you have to set the caching properties in the map and all layers are constrained
to those settings.

2. Yes, but for each layer you have to decide if you want it cached or not.

3. Yes, and you can also add the same layer on your client's map in a plain and
cached way.

Using an external GeoWebCache
The integrated GeoWebCache is a convenient way to use a powerful caching tool while
avoiding the complexity of an external installation and configuration. So what's the point
of using an external instance of GeoWebCache?

In a production environment, you will often have to deal with multiple GeoServer instances,
running in parallel like a cluster. Indeed we will see how to configure such a scenario in
Chapter 11, Tuning GeoServer in a Production Environment. When more than one GeoServer
publishes the same data, you can't efficiently use the integrated GeoWebCache. There
is no way to connect all the GeoServers to a single GeoWebCache. Anyway it would make
no sense as you will introduce a single point of failure in your architecture.

So you have two ways to go: using the integrated GeoWebCache on each GeoServer node,
duplicating the tiles and wasting a lot of space, or installing an external GeoWebCache and
linking it to each GeoServer node.

Performance and Caching

[232]

Installing and configuring an external GeoWebCache is out of the scope of this book. You
have to turn off the integrated GeoWebCache. You can do this from the Caching Defaults
page, disabling all services and turning off the automatic creation of a cache configuration
for each new layer.

If you used the integrated GeoWebCache before, you may also want to disable each layer
and remove tiles.

The standalone GeoWebCache is a Java web application that you can deploy on a Tomcat
instance, the same as we did for GeoServer in Chapter 2, Installing Geoserver. Once installed,
you have to manually configure each layer by editing the geowebcache.xml file.

Refer to the project online documentation for detailed instructions and reference
(http://geowebcache.org/docs/current/index.html).

Chapter 8

[233]

Summary
We explored the integrated GeoWebCache and how it may impact on GeoServer
performances. Deploying a properly configured production site requires caching,
unless your planned users are very few.

Configuring a map cache requires you to act not only on the server side but also on the client
side. Clients should know how you cached the data and compile proper map requests for
the benefit of pre-calculated tiles. We used JavaScript and OpenLayers to have a look at the
client side.

GeoServer integrates a pretty interface for configuring cache, but as your site grows and
you find yourself increasingly adding and removing layers, you may wonder if a way of
automating the configuration exists.

In the next chapter, we will explore the GeoServer REST interface. REST exposes most of the
GeoServer interface through HTTP calls. Using a scripting language, you can build simple
procedures that help you in performing repetitive tasks.

We will see how to use the REST interface to add data stores and workspaces, publish layers,
and apply changes to your configuration.

9
Automating Tasks: GeoServer

REST Interface

In the previous chapters you learned how to connect GeoServer to your data.

Creating data stores or feature types, configuring layers, and uploading styles
can be tedious and overwhelming tasks as soon as your site grows from the
data we used in the examples.

If your site intends to deliver a professional map service, it will probably be
replicated on more instances. We will see in detail how this can be done, but for
now you will probably have guessed that it means more effort to configure and
synchronize all nodes.

When you are dealing with a repetitive task, you usually look at how you can
automate it.

GeoServer's developers didn't leave you alone in the dark. GeoServer includes a
REST interface that lets you perform most administrative tasks. In this chapter
we will see how you can add, update, and delete your data configuration.

In this chapter we will cover the following topics in detail:

 � Defining REST

 � Using REST with cURL and Python

 � Configuring Workspaces, Data Stores, and Feature Types

 � Configuring Styles and Layers

Automating Tasks: GeoServer REST Interface

[236]

Introducing REST
So, what is REST? The acronym stands for REpresentational State Transfer, and defines
client-server interaction in terms of state transitions. Each request from the client is a
transition to a new state. The response sent by the server represents the application state
after the transition.

Does it sound too complicated? From a theory point of view you may find it unconventional,
especially if you are used to a client/server with a stateful interaction. REST is stateless, and
once you get the general idea you will discover that it is very simple.

Although REST is commonly thought of as a web interface, actually it is much
more. The term REST was defined by Roy T. Fielding—one of the most important
people behind HTTP protocol design—in his PhD thesis. REST describes the
interaction between clients and servers, and does it by abstracting from any
protocol. It describes a set of operations that a server has to implement and that
a client can use. Of course in implementations, a protocol, for example, HTTP,
has to be selected. You could also develop a REST interface without HTTP.
Refer to the following links to find out more on REST:

 � http://www.ics.uci.edu/~fielding/pubs/
dissertation/top.htm

 � http://en.wikipedia.org/wiki/Representational_
State_Transfer

GeoServer's REST interface uses HTTP and defines a set of operations and resources.
Operations are derived from HTTP so you can perform GET, POST, PUT, and DELETE
operations. Resources are the building blocks of GeoServer's configuration, which
includes workspaces, data stores, layers, and so on.

Using REST
REST defines a set of operations defined from the HTTP protocol; so how can you interact
with it? Using a browser can be a common way to send HTTP requests to a server; you do
it almost every day when you browse the Internet and you do it with the GeoServer web
interface! But using a browser is not a simple way to automate tasks; it requires human
interaction. We need something that enables us to build small programs.

Chapter 9

[237]

A lot of different tools exist that enable you to interact with REST. You can use programming
languages such as Java or PHP, or script languages such as PowerShell in Windows or any
Linux shell. In this chapter we will see examples in the programming language, Python,
and with cURL. Python is a programming language that leverages on simplicity and code
readability, and hence it is very easy to create small programs with it. cURL is a library and a
command-line tool that can be easily incorporated in simple shell scripts. Both of these tools
allow users to create REST requests in a very simple manner, that is, by writing a few lines of
code. This avoids you getting distracted by a complex syntax.

In this chapter, it is assumed that you have a working installation of Python and
cURL. If you are using a Linux box, it is quite likely that you already have both
installed and configured, or you can rely on your distribution package system to
install a recent release.
For Windows, you can get Python from the project site at
http://python.org/.
cURL is available as a source, for the brave, or as a binary package from
http://curl.haxx.se/download.html.

Time for action – installing the Requests library
We stated before that Python mainly aims at simplicity and code readability, but
unfortunately this is not always the case. Interacting with REST using the standard
Python libraries can be painfully laborious. Luckily, there is an open source project
that can solve this. The project produced a library called Requests, and I have to say
it really is an appropriate name. So let's install it!

1. As the first step, you need to download the ZIP or TAR archive containing the
library code:
~$ wget https://github.com/kennethreitz/requests/tarball/master -O
master.tar.gz

~$ ls -al

drwxrwxr-x 2 stefano stefano 4096 Oct 15 08:01 ./

drwxr-xr-x 9 stefano stefano 4096 Oct 15 07:41 ../

-rw-rw-r-- 1 stefano stefano 720204 Oct 15 08:02 master.tar.gz

2. Now extract the archive content:
~$ tar xvfz master.tar.gz

…

Automating Tasks: GeoServer REST Interface

[238]

3. Enter the new folder and install it into your site package:
~$ cd kennethreitz-requests-c03e893

~$ sudo python setup.py install

4. Installation is now complete. Check it by opening Python and importing the new
library in the following manner:
~$ python

Python 2.7.3 (default, Aug 1 2012, 05:14:39)

[GCC 4.6.3] on linux2

Type "help", "copyright", "credits" or "license" for more
information.

>>> import requests

>>>

What just happened?
You installed the Requests library as a site package inside your Python installation. You can
now use it inside any Python program, leveraging on its powerful objects for the purpose of
interacting with the HTTP protocol.

Requests is an open source project started by Kenneth Reitz. You can download
and use it in a very liberal way. It is released under the ISC license. You can
also fork it on GitHub and add features. The following link will lead you to the
Requests download page:
http://docs.python-requests.org/en/latest/

Managing data
The core of each map service is data. We need to create workspaces for grouping together
data sets, connecting databases and folders containing data, adding feature types, and
configuring their options. GeoServer's REST interface exposes resources for each one of them.

Working with workspaces and namespaces
A workspace is a logical entity you can use to group data. A workspace is always linked to a
namespace URI that defines a web reference for it. The REST interface defines two resources
that you can use to access these elements. They are as follows:

 � /workspaces

 � /namespaces

http://docs.python-requests.org/en/latest/
http://docs.python-requests.org/en/latest/

Chapter 9

[239]

GET, POST, PUT, and DELETE operations are defined for both of these resources, which allows
you to view, create, update, and delete workspaces and namespaces.

Time for action – managing workspaces
We are going to use REST operations with workspaces. In this section, as in the others
contained in this chapter, we will use both cURL and Python to perform the same operation.
The examples are shown in a Linux shell, but cURL and Python syntaxes are identical in a
Windows shell.

1. The first step looks at which workspaces are defined in your GeoServer instance.
This requires a GET operation. The following code shows you the syntax. cURL
has a lot of options, you can have a look at all of them running it with the curl
--help command from Linux and Windows. On Linux you can also have a look at
the manual with the command man curl. The first option we use is –u. It stands
for user authentication and you have to insert the user ID and password you set in
Chapter 2, Getting Started with GeoServer, when we modified the default password.

The -v option tells cURL to run verbosely, so it will output detailed information on
the request processing. The -X option defines which HTTP operation you want to
use to send your requests. If you don't insert it, cURL assumes GET as its default. You
can avoid writing the option, although inserting it may make the code clearer. The
-H option lets you add headers to your requests. You may repeat this option as many
times as you need, to specify multiple headers. In this case we are using it to make the
server know that we would accept an XML format as a response. After that, we have
the URL we want requested. The URL is composed of a base part that will be the same
for all the operations, that is, http://yourhostname:yourport/geoserver/
rest, and an operation part that specifies the operation. Finally, we add the -o option
to write the response to a file:
curl -u admin:password -v -XGET -H 'Accept: text/xml' http://
localhost:8080/geoserver/rest/workspaces -o workspaces.xml

2. A lot of information is displayed. This may be very useful when in trouble, and you
need to debug what is wrong. A line starting with > means "header data sent by
cURL", while < means "header data received by cURL". In this case, we just look at the
status code received from GeoServer; it reports 200, that is, the HTTP code for OK:
* About to connect() to localhost port 8080 (#0)
* Trying 127.0.0.1... % Total % Received % Xferd Average
Speed Time Time Time Current
 Dload Upload Total Spent
Left Speed
 0 0 0 0 0 0 0 0 --:--:-- --:--:--
--:--:-- 0connected
* Server auth using Basic with user 'admin'

Automating Tasks: GeoServer REST Interface

[240]

> GET /geoserver/rest/workspaces HTTP/1.1
> Authorization: Basic YWRtaW46Y29yZS4yMDEy
> User-Agent: curl/7.22.0 (x86_64-pc-linux-gnu) libcurl/7.22.0
OpenSSL/1.0.1 zlib/1.2.3.4 libidn/1.23 librtmp/2.3
> Host: localhost:8080
> Accept: text/xml
>
< HTTP/1.1 200 OK
< Date: Tue, 16 Oct 2012 19:59:27 GMT
< Server: Noelios-Restlet-Engine/1.0..8
< Content-Type: application/xml
< Transfer-Encoding: chunked
<
{ [data not shown]
100 1100 0 1100 0 0 18648 0 --:--:-- --:--:--
--:--:-- 19642
* Connection #0 to host localhost left intact
* Closing connection #0

3. You may want to check if the workspaces.xml file was created. In order to do that,
run the following command:
~/REST$ ls -al

total 12

drwxrwxr-x 2 stefano stefano 4096 Oct 16 21:59 ./

drwxr-xr-x 9 stefano stefano 4096 Oct 16 21:11 ../

-rw-rw-r-- 1 stefano stefano 1100 Oct 16 21:59 workspaces.xml

4. Before analysing the response file content, let's do the same request using Python.
From your console, launch it and import the requests module as shown:
~/REST$ python
Python 2.7.3 (default, Aug 1 2012, 05:14:39)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more
information.
>>> import requests

5. Now define a new string variable for the URL:
>>> myUrl = 'http://localhost:8080/geoserver/rest/workspaces'

6. Also, a Python dictionary for the headers:
>>> headers = {'Accept': 'text/xml'}

Chapter 9

[241]

7. We are ready to send the request; the requests object has a method for each
HTTP operation, and in a really "Pythonic" way, the name is the operation.
You have to call the method by passing the parameters for the URL, headers,
and authentication:
>>> resp = requests.get(myUrl,auth=('admin','password'),headers=he
aders)

8. So the response was saved in the new variable called resp. The Python interpreter
didn't throw any exception, so things should be ok; but how can we check what
GeoServer replied? The resp variable is indeed a response object defined in the
requests library, and it has methods to extract information about the response.
Start by looking at the status code of the response.
>>> resp.status_code
200

9. Nice! It succeeded. But what if you would like to extract the response body to list it
or to save it to a file? The response.text method is what you are looking for, so
let's save the result in a file:
file = open('workspaces_py.xml','w')
file.write(resp.text)
file.close()

10. Now you should have two XML files looking absolutely identical. Open one of them
and look at its content. It lists the workspaces defined on your GeoServer, and it also
gives you a URL to reference each one of them. This is shown as follows:
<workspaces>
 <workspace>
 <name>NaturalEarth</name>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
rel="alternate" href="http://localhost:8080/geoserver/rest/
workspaces/NaturalEarth.xml" type="application/xml"/>
 </workspace>
 <workspace>
 <name>tiger</name>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
rel="alternate" href="http://localhost:8080/geoserver/rest/
workspaces/tiger.xml" type="application/xml"/>
 </workspace>
…
</workspaces>

Automating Tasks: GeoServer REST Interface

[242]

11. Now use the information from the XML file to retrieve information about the first
workspace. In cURL, type the following command:
curl -u admin:password -XGET -H 'Accept: text/xml' http://
localhost:8080/geoserver/rest/workspaces/NaturalEarth -o
NaturalEarth.xml

12. Do the same in Python:
>>> myUrl = 'http://localhost:8080/geoserver/rest/workspaces/
NaturalEarth'
>>> headers = {'Accept': 'text/xml'}
>>> resp = requests.get(myUrl,auth=('admin','password'),headers=he
aders)

13. The information retrieved contains the URL to explore data stores linked to
the workspace:
<workspace>
 <name>NaturalEarth</name>
 <dataStores>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
rel="alternate" href="http://localhost:8080/geoserver/rest/
workspaces/NaturalEarth/datastores.xml" type="application/xml"/>
 </dataStores>
 <coverageStores>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
rel="alternate" href="http://localhost:8080/geoserver/rest/
workspaces/NaturalEarth/coveragestores.xml" type="application/
xml"/>
 </coverageStores>
 <wmsStores>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
rel="alternate" href="http://localhost:8080/geoserver/rest/
workspaces/NaturalEarth/wmsstores.xml" type="application/xml"/>
 </wmsStores>
</workspace>

14. Now retrieve information about namespaces in cURL:
curl -u admin:password -XGET -H 'Accept: text/xml' http://
localhost:8080/geoserver/rest/namespaces -o namespaces.xml

15. Retrieve the same in Python:
>>> myUrl = 'http://localhost:8080/geoserver/rest/namespaces'
>>> headers = {'Accept': 'text/xml'}
>>> resp = requests.get(myUrl,auth=('admin','password'),headers=he
aders)

Chapter 9

[243]

16. In the response, you can see the namespace list, which is pretty similar to the
workspace list. As we wrote before, they are bounded together:
<namespaces>
 <namespace>
 <name>NaturalEarth</name>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
rel="alternate" href="http://localhost:8080/geoserver/rest/
namespaces/NaturalEarth.xml" type="application/xml"/>
 </namespace>
 <namespace>
 <name>tiger</name>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
rel="alternate" href="http://localhost:8080/geoserver/rest/
namespaces/tiger.xml" type="application/xml"/>
 </namespace>
…
</namespaces>

17. Now have a look at information about a single namespace. First in cURL:
curl -u admin:password -XGET -H 'Accept: text/xml' http://
localhost:8080/geoserver/rest/namespaces/tiger -o tigerNamespace.
xml

18. Then in Python:
>>> myUrl = 'http://localhost:8080/geoserver/rest/namespaces/
tiger'
>>> headers = {'Accept': 'text/xml'}
>>> resp = requests.get(myUrl,auth=('admin','password'),headers=he
aders)

19. The response contains the prefix name for the namespace, that is, the linked
workspace, the namespace URI, and a URL to retrieve feature types linked to
the namespace:
<namespace>
 <prefix>tiger</prefix>
 <uri>http://www.census.gov</uri>
 <featureTypes>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
rel="alternate" href="http://localhost:8080/geoserver/rest/
workspaces/tiger/featuretypes.xml" type="application/xml"/>
 </featureTypes>
</namespace>

Automating Tasks: GeoServer REST Interface

[244]

20. Until now, you have retrieved the information; now try to create a new namespace.
In cURL, we need to specify a different operation with the -X option and send
some data to GeoServer, that is, XML code containing the information about the
namespace to be created. We use the -d option for this:
curl -u admin:password -XPOST -H 'Content-type: text/xml' -d '<na
mespace><prefix>newWorkspace</prefix><uri>http://geoserver.org</
uri></namespace>' http://localhost:8080/geoserver/rest/namespaces

21. To do the same in Python, you can save the XML code beforehand in a file:
>>> myUrl = 'http://localhost:8080/geoserver/rest/namespaces'
>>> file = open('requestBody.xml','r')
>>> payload = file.read()
>>> headers = {'Content-type': 'text/xml'}
>>> resp = requests.post(myUrl, auth=('admin','password'),
data=payload, headers=headers)
>>> resp.status_code
500

22. Huh! We got an error. 500 is the HTTP code for an internal server error. Indeed, you
can't create a duplicated namespace. On looking at the GeoServer log, you should
see something like the following:
org.geoserver.rest.RestletException: java.lang.
IllegalArgumentException: Namespace with prefix 'newWorkspace'
already exists.
 at org.geoserver.rest.ReflectiveResource.handleException(Reflect
iveResource.java:325)
 at org.geoserver.rest.ReflectiveResource.
handlePost(ReflectiveResource.java:123)
…

23. Open the GeoServer web interface and look at the workspace list; you can now see
the one you created, and if you click on it you will see the namespace URI you defined:

Chapter 9

[245]

24. Now we want to set a more appropriate URI for the new workspace. To do so, we
will use the PUT operation. In cURL, it is as follows:
curl -u admin:password -XPUT -H 'Content-type: text/xml' -H
'Accept: text/xml' -d '<namespace><prefix>newWorkspace</
prefix><uri>http://localhost:8080/geoserver</uri></namespace>'
http://localhost:8080/geoserver/rest/namespaces/newWorkspace

25. In Python, it is as follows:
>>> myUrl = 'http://localhost:8080/geoserver/rest/namespaces/
newWorkspace'
>>> file = open('requestBody.xml','r')
>>> payload = file.read()
>>> headers = {'Content-type': 'text/xml'}
>>> resp = requests.put(myUrl, auth=('admin','password'),
data=payload, headers=headers)

26. This time we didn't get an error. You can update the same namespace as many times
as you need.

27. The last operation is DELETE. To remove the new workspace from the GeoServer
configuration in cURL, run the following command:
curl -u admin:password -XDELETE -H 'Accept: text/xml' http://
localhost:8080/geoserver/rest/workspaces/newWorkspace

28. In Python, run the following code:
>>> myUrl = 'http://localhost:8080/geoserver/rest/workspaces/
newWorkspace'
>>> headers = {'Accept': 'text/xml'}
>>> resp = requests.delete(myUrl, auth=('admin','password'),
headers=headers)
>>> resp.status_code
404

29. And, of course, you can't remove the same workspace twice; that is why you got an
error. 404 is the HTTP code for a nonexistent document.

What just happened?
You learned how to interact with the REST interface. You did it for namespaces and
workspaces, but the basic concepts you learned apply to all REST operations. It is important
that you understand that REST is stateless. Each request you sent in the examples were
absolutely unaware of what you did previously. You can link REST operations in a chain,
but is up to you to extract information from the responses and build requests accordingly.

Automating Tasks: GeoServer REST Interface

[246]

If you were a little confused by the Python code, there are a lot of free resources
to explore this language. You will learn it very fast and add a powerful tool to
your GIS skill. The following links will help you learn Python:

 � http://www.greenteapress.com/thinkpython

 � http://docs.python.org/tutorial

Using data stores
Data stores connect GeoServer to your data. You can't use data that is not supported by
GeoServer with a built-in connector or plugin. Of course, the REST interface supports all
operations on data stores. The resource exposed is in the form shown as follows:

/workspaces/<ws>/datastores

Here, ws stands for the workspace to which the data store is linked.

Time for action – managing data stores
Did you enjoy using cURL and Python? Where we are again with cURL and Python, since you
are now so skilled! So let's get information about data stores:

1. The GET operation lets you know which data stores are available in the
configuration. Retrieve the information in Python using the following code:
>>> myUrl = 'http://localhost:8080/geoserver/rest/workspaces/
NaturalEarth/datastores'
>>> headers = {'Accept': 'text/xml'}
>>> resp = requests.get(myUrl,auth=('admin','password'),headers=he
aders)

2. In cURL, use the following command:
curl -u admin:password -XGET -H 'Accept: text/xml' http://
localhost:8080/geoserver/rest/workspaces/NaturalEarth/datastores
-o naturalEarthDataStores.xml

3. The response contains all the data stores linked to the workspace. The only attribute
is the name and the link to retrieve the detailed information about each one:
<dataStores>
 <dataStore>
 <name>Natural Earth Shapes</name>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
rel="alternate" href="http://localhost:8080/geoserver/rest/
workspaces/NaturalEarth/datastores/Natural+Earth+Shapes.xml"

http://localhost:8080/geoserver/rest/workspaces/NaturalEarth/datastores
http://localhost:8080/geoserver/rest/workspaces/NaturalEarth/datastores

Chapter 9

[247]

type="application/xml"/>
 </dataStore>
</dataStores>

If you are wondering what the request is to get a list of all data stores configured
on GeoServer, I am sorry to tell you it does not exist. You have to query each
workspace. You may request the workspace list and iterate on items to retrieve
all data stores.

4. You created the Natural Earth data store in Chapter 6, Styling Your Layers. In case
you don't remember what it is about, let's request the information in Python:
>>> myUrl = 'http://localhost:8080/geoserver/rest/workspaces/
NaturalEarth/datastores/Natural+Earth+Shapes'
>>> headers = {'Accept': 'text/xml'}
>>> resp = requests.get(myUrl,auth=('admin','password'),headers=he
aders)

5. And in cURL:
curl -u admin:password -XGET -H 'Accept: text/xml' http://
localhost:8080/geoserver/rest/workspaces/NaturalEarth/datastores/
Natural+Earth+Shapes -o naturalEarthShapes.xml

6. Open the XML file. It contains much more information than the previous responses.
Data stores are more complicated objects than workspaces. Keep in mind that data
stores are heterogeneous; the connection parameter tag may contain very different
elements depending on the data store type, for example, a PostGIS data store will
have user ID, password, and a TCP port:
<dataStore>
 <name>Natural Earth Shapes</name>
 <type>Directory of spatial files (shapefiles)</type>
 <enabled>true</enabled>
 <workspace>
 <name>NaturalEarth</name>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
rel="alternate" href="http://localhost:8080/geoserver/rest/
workspaces/NaturalEarth.xml" type="application/xml"/>
 </workspace>
 <connectionParameters>
 <entry key="memory mapped buffer">false</entry>
 <entry key="timezone">Europe/Rome</entry>
 <entry key="create spatial index">true</entry>
 <entry key="charset">ISO-8859-1</entry>
 <entry key="filetype">shapefile</entry>

http://localhost:8080/geoserver/rest/workspaces/NaturalEarth/datastores/Natural+Earth+Shapes
http://localhost:8080/geoserver/rest/workspaces/NaturalEarth/datastores/Natural+Earth+Shapes
http://localhost:8080/geoserver/rest/workspaces/NaturalEarth/datastores/Natural+Earth+Shapes

Automating Tasks: GeoServer REST Interface

[248]

 <entry key="cache and reuse memory maps">true</entry>
 <entry key="url">file:///home/stefano/naturalEarth</entry>
 <entry key="namespace">http://www.naturalearthdata.com/</
entry>
 </connectionParameters>
 <__default>false</__default>
 <featureTypes>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
rel="alternate" href="http://localhost:8080/geoserver/rest/
workspaces/NaturalEarth/datastores/Natural+Earth+Shapes/
featuretypes.xml" type="application/xml"/>
 </featureTypes>
</dataStore>

7. It is now time to create a new data store. We will start with a single shapefile by
duplicating tiger counties. You have to provide a lot of information, hence
create a new XML file, insert the following code, and save it as tigerCounties.
xml. You should recognize many parameters; you valorised them in Chapter 5,
Adding Your Data, when adding the data store from the WEB interface. The key
part is the type element, where you specify which kind of data you are adding. The
connection parameters collection is also important, where you insert information on
how GeoServer could retrieve the data from the filesystem or a DB:
<dataStore>
 <name>tiger_counties_REST</name>
 <description>tiger counties created from REST</description>
 <type>Shapefile</type>
 <enabled>true</enabled>
 <connectionParameters>
 <entry key="memory mapped buffer">false</entry>
 <entry key="create spatial index">true</entry>
 <entry key="charset">ISO-8859-1</entry>
 <entry key="filetype">shapefile</entry>
 <entry key="cache and reuse memory maps">true</entry>
 <entry key="url">file:///home/stefano/shapes2/tl_2011_us_
county.shp</entry>
 <entry key="namespace">http://www.census.gov</entry>
 </connectionParameters>
 <__default>false</__default>
</dataStore>

8. Now call the REST interface in cURL and add the data store:
curl -u admin:password -XPOST -T tigerCounties.xml -H 'Content-
type: text/xml' -H 'Accept: text/xml' http://localhost:8080/
geoserver/rest/workspaces/tiger/datastores

Chapter 9

[249]

9. Open the web interface and list the configured data store. Was your add
request successful?

10. Do the same in Python. Note that in a Python dictionary, for example, the headers
variable, you can add more than a key-value pair. In this case, you specify two
header values:
>>> myUrl = 'http://localhost:8080/geoserver/rest/workspaces/
tiger/datastores'
>>> file = open('tigerCounties.xml','r')
>>> payload = file.read()
>>> headers = {'Content-type': 'text/xml','Accept': 'text/xml'}
>>> resp = requests.post(myUrl, auth=('admin','password'),
data=payload, headers=headers)
>>> resp.status_code
>>> 500

11. And, of course, you can't add two identical data stores; that is why you got an
internal server error code. In the GeoServer log, you will find the following:
2012-10-20 17:52:56,682 ERROR [geoserver.rest] -
org.geoserver.rest.RestletException: java.lang.
IllegalArgumentException: Store 'tiger_counties_REST' already
exists in workspace 'tiger'
 at org.geoserver.rest.ReflectiveResource.handleException(R
eflectiveResource.java:325)
 at org.geoserver.rest.ReflectiveResource.
handlePost(ReflectiveResource.java:123)
…

12. Adding a shapefile data store was quite easy. Let's try to add a new PostGIS
source to our configuration. Again, it is better to create an XML file holding all the
parameters, name it postgis.xml, and insert the code. The mandatory connection
parameters are host, port, database, schema, user, and password. In this case,
we inserted all the default values you would find by adding the data store from the
web interface:
<dataStore>
 <name>myPostGIS</name>
 <description>PostGIS local instance</description>
 <type>PostGIS</type>
 <enabled>true</enabled>
 <connectionParameters>
 <entry key="host">localhost</entry>

Automating Tasks: GeoServer REST Interface

[250]

 <entry key="port">5432</entry>
 <entry key="database">postgis20</entry>
 <entry key="schema">public</entry>
 <entry key="user">postgres</entry>
 <entry key="passwd">postgres</entry>
 <entry key="dbtype">postgis</entry>
 <entry key="validate connections">true</entry>
 <entry key="Connection timeout">20</entry>
 <entry key="min connections">1</entry>
 <entry key="max connections">10</entry>
 <entry key="Loose bbox">true</entry>
 <entry key="fetch size">1000</entry>
 <entry key="Max open prepared statements">50</entry>
 <entry key="Estimated extends">true</entry>
 </connectionParameters>
 <__default>false</__default>
</dataStore>

13. Now use a cURL call to create your new PostGIS source:
curl -u admin:password -XPOST -T postgis.xml -H 'Content-type:
text/xml' -H 'Accept: text/xml' http://localhost:8080/geoserver/
rest/workspaces/tiger/datastores

14. You can use the following Python syntax to send the same requests. As usual, if you
already created it with cURL, you will get an HTTP 500 error code:
>>> myUrl = 'http://localhost:8080/geoserver/rest/workspaces/
tiger/datastores'
>>> file = open('postgis.xml','r')
>>> payload = file.read()
>>> headers = {'Content-type': 'text/xml','Accept': 'text/xml'}
>>> resp = requests.post(myUrl, auth=('admin','password'),
data=payload, headers=headers)
>>> resp.status_code
>>> 500

15. You can update a data store configuration. If your PostGIS password was changed
from the DBA, you can send a request to update it on GeoServer. Create an XML
file with the modified value:
<dataStore>
 <name>myPostGIS</name>
 <description>PostGIS local instance</description>
 <type>PostGIS</type>
 <enabled>true</enabled>
 <connectionParameters>
 <entry key="host">localhost</entry>

Chapter 9

[251]

 <entry key="port">5432</entry>
 <entry key="database">postgis20</entry>
 <entry key="schema">public</entry>
 <entry key="user">postgres</entry>
 <entry key="passwd">new_pwd</entry>
 <entry key="dbtype">postgis</entry>
 <entry key="validate connections">true</entry>
 <entry key="Connection timeout">20</entry>
 <entry key="min connections">1</entry>
 <entry key="max connections">10</entry>
 <entry key="Loose bbox">true</entry>
 <entry key="fetch size">1000</entry>
 <entry key="Max open prepared statements">50</entry>
 <entry key="Estimated extends">true</entry>
 </connectionParameters>
 <__default>false</__default>
</dataStore>

16. Then send it in a PUT request. In cURL, it is as follows:
curl -u admin:password -XPUT -T updPostGIS.xml -H 'Content-type:
text/xml' -H 'Accept: text/xml' http://localhost:8080/geoserver/
rest/workspaces/tiger/datastores/myPostGIS

17. And in Python, the syntax is as follows:
>>> myUrl = 'http://localhost:8080/geoserver/rest/workspaces/
tiger/datastores/myPostGIS'
>>> file = open('updPostGIS.xml','r')
>>> payload = file.read()
>>> headers = {'Content-type': 'text/xml','Accept': 'text/xml'}
>>> resp = requests.put(myUrl, auth=('admin','password'),
data=payload, headers=headers)

18. The last supported operation is DELETE, for dropping a data store. Clean your
configuration by removing the duplicated data store for the tiger counties
we created:
curl -u admin:password -XDELETE -H 'Accept: text/xml' http://
localhost:8080/geoserver/rest/workspaces/tiger/datastores/tiger_
counties_REST

19. And the same operation in Python:
>>> myUrl = 'http://localhost:8080/geoserver/rest/workspaces/
tiger/datastores/tiger_counties_REST'
>>> headers = {'Accept': 'text/xml'}
>>> resp = requests.delete(myUrl, auth=('admin','password'),
headers=headers)

Automating Tasks: GeoServer REST Interface

[252]

What just happened?
You learned how to play with data stores, but there is another way of creating it. In some
cases you may create it implicitly while creating a feature type. We will look at it in the very
next paragraph.

Using feature types
Feature types are strictly related to data stores; the latter are the data containers and the
former are geometrical homogenous data sets. In some cases there is a one-to-one relation
among feature types and data stores, as in the data store for the single shapefile of tiger
counties we created. More often, a data store is connected to many feature types. As with
other resources, you can use REST operations to list information, add and delete items, and
modify the configuration.

The resources are exposed as follows:

/workspaces/<ws>/datastores/featuretypes/<ft>

Here, ws means a workspace existing in your system and ft is the feature type on which you
want to perform the operation.

Retrieving information about feature types uses the GET operation as used by the previous
resources. The output is quite long, depending on how many attributes it holds. It looks
as follows:

<featureType>
 <name>ne_110m_admin_0_countries</name>
 <nativeName>ne_110m_admin_0_countries</nativeName>
 <namespace>
 <name>NaturalEarth</name>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
rel="alternate" href="http://localhost:8080/geoserver/rest/namespaces/
NaturalEarth.xml" type="application/xml"/>
 </namespace>
 <title>ne_110m_admin_0_countries</title>
 <description>Contents of file</description>
 <keywords>
 <string>features</string>
 <string>ne_110m_admin_0_countries</string>
 </keywords>
 <nativeCRS>GEOGCS["GCS_WGS_1984",
 DATUM["D_WGS_1984",
 SPHEROID["WGS_1984", 6378137.0, 298.257223563]],
 PRIMEM["Greenwich", 0.0],
 UNIT["degree", 0.017453292519943295],

Chapter 9

[253]

 AXIS["Longitude", EAST],
 AXIS["Latitude", NORTH]]</nativeCRS>
 <srs>EPSG:4326</srs>
 <nativeBoundingBox>
 <minx>-179.99999999999997</minx>
 <maxx>180.00000000000014</maxx>
 <miny>-90.00000000000003</miny>
 <maxy>83.64513000000001</maxy>
 <crs>GEOGCS["GCS_WGS_1984",
 DATUM["D_WGS_1984",
 SPHEROID["WGS_1984", 6378137.0, 298.257223563]],
 PRIMEM["Greenwich", 0.0],
 UNIT["degree", 0.017453292519943295],
 AXIS["Longitude", EAST],
 AXIS["Latitude", NORTH]]</crs>
 </nativeBoundingBox>
 <latLonBoundingBox>
 <minx>-179.99999999999997</minx>
 <maxx>180.00000000000014</maxx>
 <miny>-90.00000000000003</miny>
 <maxy>83.64513000000001</maxy>
 <crs>GEOGCS["WGS84(DD)",
 DATUM["WGS84",
 SPHEROID["WGS84", 6378137.0, 298.257223563]],
 PRIMEM["Greenwich", 0.0],
 UNIT["degree", 0.017453292519943295],
 AXIS["Geodetic longitude", EAST],
 AXIS["Geodetic latitude", NORTH]]</crs>
 </latLonBoundingBox>
 <projectionPolicy>NONE</projectionPolicy>
 <enabled>true</enabled>
 <store class="dataStore">
 <name>Natural Earth Countries</name>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
rel="alternate" href="http://localhost:8080/geoserver/rest/
workspaces/NaturalEarth/datastores/Natural+Earth+Countries.xml"
type="application/xml"/>
 </store>
 <maxFeatures>0</maxFeatures>
 <numDecimals>0</numDecimals>
 <attributes>
 <attribute>
 <name>the_geom</name>
 <minOccurs>0</minOccurs>

Automating Tasks: GeoServer REST Interface

[254]

 <maxOccurs>1</maxOccurs>
 <nillable>true</nillable>
 <binding>com.vividsolutions.jts.geom.MultiPolygon</binding>
 </attribute>
…
 </attributes>
</featureType>

Time for action – adding a new shapefile
We already added a single shapefile data store, now we want to upload a new shapefile
and configure it on GeoServer. And, of course, we are going to use only HTTP operations
to accomplish the task.

1. We will use a new layer from the Natural Earth repository. We will use a small
shapefile, that is, the small-scale world admin boundaries:
~$ wget http://www.naturalearthdata.com/http//www.
naturalearthdata.com/download/110m/cultural/110m-admin-0-
countries.zip

2. Don't uncompress the archive; we will forward it to GeoServer in the ZIP format,
and we will use a PUT operation. Note that to the header specifying the content
type, we are transferring a zip file to GeoServer; this way we can publish a data set
on a remote node without accessing the remote filesystem. We are also creating a
new data store, Natural+Earth+Countries; the URL points to this nonexistent
data store:
curl -u admin:password -XPUT -H 'Content-type: application/
zip' -T /home/stefano/110m-admin-0-countries.zip http://
localhost:8080/geoserver/rest/workspaces/NaturalEarth/datastores/
Natural+Earth+Countries/file.shp

3. Of course you can do the same with Python. Note that reading the ZIP file is pretty
much the same as reading an XML file. The rb parameter specifies that we are going
to read a binary file:
>>> myUrl = 'http://localhost:8080/geoserver/rest/workspaces/
NaturalEarth/datastores/Natural+Earth+Countries/file.shp'
>>> file = open('110m-admin-0-countries.zip','rb')
>>> payload = file.read()
>>> headers = {'Content-type': 'application/zip'}
>>> resp = requests.put(myUrl, auth=('admin','password'),
data=payload, headers=headers)

Chapter 9

[255]

4. Now look at the web interface and list the data stores; there is a new one:

5. If you look at the details, you can see that the shapefile is now stored in the
GeoServer data folder:

6. And, of course, GeoServer created a new layer for the feature type, populating all
parameters and enabling them:

Automating Tasks: GeoServer REST Interface

[256]

7. According to the geometry type, GeoServer assigns a default style so that you can
also look at the data preview:

What just happened?
You created the data store, the feature type, and the layer with just one operation.
GeoServer can manage retrieving all the needed information from your data set and can
manage using many default values. Of course, you may want to use different styles, but the
REST interface truly makes remote administration very easy.

Time for action – adding a PostGIS table
PostGIS data store is one of those connected to many feature types. You will probably have
new spatial data to add after creating the data store. Let's see how to do so:

1. In Chapter 5, Adding Your Data, you loaded the tiger counties in PostGIS. Now do
the same with the admin boundaries shapefile from Natural Earth; call the table
ne_110m_admin. Then use the PostGIS connection to add the table as a new
feature type in the workspace NaturalEarth. Note that we are delivering very
little information about the feature type to GeoServer; the table name is the only
mandatory field:
curl -u admin:password -XPOST -H 'Content-type: text/xml' -d
'<featureType><name>ne_110m_admin</name></featureType>' http://
localhost:8080/geoserver/rest/workspaces/NaturalEarth/datastores/
myPostGIS/featuretypes

http://localhost:8080/geoserver/rest/workspaces/NaturalEarth/datastores/myPostGIS/featuretypes
http://localhost:8080/geoserver/rest/workspaces/NaturalEarth/datastores/myPostGIS/featuretypes
http://localhost:8080/geoserver/rest/workspaces/NaturalEarth/datastores/myPostGIS/featuretypes

Chapter 9

[257]

2. The Python syntax is as follows:
>>> myUrl = 'http://localhost:8080/geoserver/rest/workspaces/
NaturalEarth/datastores/myPostGIS/featuretypes'
>>> payload = '<featureType><name>ne_110m_admin</name></
featureType>'
>>> headers = {'Content-type': 'text/xml'}
>>> resp = requests.post(myUrl, auth=('admin','password'),
data=payload, headers=headers)

3. Looking at the layers list, we can see the newly added workspace:

4. The new feature type works perfectly, and of course we can add more parameters
to the XML code to have a better layer configuration. These examples add a more
detailed description, some keywords, and a style other than the default one:
<featureType>
 <name>World boundaries</name>
 <nativeName>ne_110m_admin</nativeName>
 <title>World boundaries</title>
 <abstract>World administrative boundaries at small scale</
abstract>
 <keywords>
 <string>Political</string>
 <string>World</string>
 </keywords>
<featureType>

5. But there's more. Not only can you add an existing table, you can also create a new
one. When creating a new table, you have to specify all the attributes required for
the layer:
<featureType>
 <name>rivers</name>
 <nativeName>rivers</nativeName>
 <title>World River</title>
 <srs>EPSG:4326</srs>
 <attributes>
 <attribute>
 <name>geom</name>
 <binding>com.vividsolutions.jts.geom.Polyline</binding>
 </attribute>
 <attribute>
 <name>name</name>

Automating Tasks: GeoServer REST Interface

[258]

 <binding>java.lang.String</binding>
 <length>30</length>
 </attribute>
 <attribute>
 <name>country_code</name>
 <binding>java.lang.String</binding>
 <length>8</length>
 </attribute>
 </attributes>
</featureType>

6. Now you have to send a POST request to create the feature. Of course, you have to
send it to a PostGIS data store:
curl -u admin:password -XPOST -T rivers.xml -H 'Content-type:
text/xml' http://localhost:8080/geoserver/rest/workspaces/
NaturalEarth/datastores/myPostGIS/featuretypes

7. The same request in Python looks like the following code:
>>> myUrl = 'http://localhost:8080/geoserver/rest/workspace/
NaturalEarth/datastores/myPostGIS/featuretypes'
>>> file = open('rivers.xml','r')
>>> payload = file.read()
>>> headers = {'Content-type': 'text/xml'}
>>> resp = requests.post(myUrl, auth=('admin','password'),
data=payload, headers=headers)

8. Now look at the layers list; there is a new item:

9. If you go to the layer's detail page, you can see that the SRS was correctly set to
4326. But as an empty feature type, the bounding boxes are inconsistent. The
attributes mentioned in the following screenshot are the ones you specified:

Chapter 9

[259]

What just happened?
You learned how to manage feature types—the link to your data. A feature type is strictly
connected to a layer, the map representation. You already implicitly created a layer when
you added or created a new feature type. To modify the way your data is published, you
have to manage the publishing elements.

Have a go hero – create a new shapefile
It was really simple to create a new table in PostGIS. Now it is time to explore other data
stores. Create the new shapefile's folder data store and create a new shapefile inside it. Use
a polygon geometry and three attributes, a date type for the object creation date, a Boolean
for the validation field, and a string field for the object code.

Automating Tasks: GeoServer REST Interface

[260]

Publishing data
Once you have configured your data on GeoServer, it is time to publish it. The REST interface
gives you resources for managing layers, styles, and layer groups.

Working with styles
You learned a lot about styles and SLD in Chapter 6, Styling Your Layers. Configuring proper
visualization requires you to create and publish proper styles.

REST offers you two resources for managing styles. They are as follows:

 � /styles

 � /workspaces/<ws>/styles

The former points to styles that are not associated to a workspace, while the latter contains
the workspaces with associated styles.

Time for action – adding a new style
Adding a new style is a routine task if you are going to publish data with REST. We will
retrieve an existing style from GeoServer, update it, and then upload to GeoServer as
a new one.

1. We will use PopulatedPlacesLabeled as a template for our new
style. Send a request to GeoServer to retrieve it and save to the
PopulatedPlacesBlueLabeled.xml file. Please note that we are sending a
header to tell GeoServer that we want the SLD format. If you specify text/xml,
you will get only a description of what the SLD is:
curl -u admin:password -XGET -H 'Accept: application/vnd.
ogc.sld+xml' http://localhost:8080/geoserver/rest/styles/
PopulatedPlacesLabeled -o PopulatedPlacesBlueLabeled.xml

2. In Python, the code is as follows:
>>> myUrl = 'http://localhost:8080/geoserver/rest/styles/
PopulatedPlacesLabeled'
>>> headers = {'Accept: application/vnd.ogc.sld+xml'}
>>> resp = requests.get(myUrl, auth=('admin','password'),
headers=headers)

3. Now, open the PopulatedPlacesBlueLabeled.xml file, go to line 46, and
replace the RGB code for black with that for blue:
 <sld:CssParameter name="fill">#0000FF</sld:CssParameter>

Chapter 9

[261]

4. Go to line 9 and replace the old name with the new name as shown in the following
line of code:
 <sld:Name>PopulatedPlacesBlueLabeled</sld:Name>

5. Save the file and close it. Now we will create a new style with this file. Send a POST
request to create a PopulatedPlacesBlueLabeled style.
curl -u admin:password -XPOST -H 'Content-type: application/
vnd.ogc.sld+xml' -T PopulatedPlacesBlueLabeled.xml http://
localhost:8080/geoserver/rest/styles

6. Or in Python:
>>> myUrl = 'http://localhost:8080/geoserver/rest/styles'
>>> file = open(PopulatedPlacesBlueLabeled.xml','r')
>>> payload = file.read()
>>> headers = {'Content-type': 'application/vnd.ogc.sld+xml'}
>>> resp = requests.post(myUrl, auth=('admin','password'),
data=payload, headers=headers)

7. Go to the WEB interface and list the styles; you should see the new one:

What just happened?
We review just the GET and POST operations for styles, but you can also use DELETE when
you want to remove a style from your configuration, or PUT when you want to change an
existing style. You can mimic the syntax learned in the previous sections.

Working with layers
Once you are done with configuring styles, you probably want to apply them to layers.
Creating or modifying styles is the last step for data publication. Unsurprisingly, it is
possible to perform layer operations with the REST interface.

Automating Tasks: GeoServer REST Interface

[262]

Time for action – managing layers
In the previous section, you created a new style; but it's useless if you can't add a layer to it.
We will now update the populatedplace layer by adding the new style.

1. Retrieve information on the layer ne_50m_populated_places.
curl -u admin:password -XGET -H 'Accept: text/xml' http://
localhost:8080/geoserver/rest/layers/ne_50m_populated_places -o
ne_50m_populated_places.xml

2. In Python, it is written as follows:
>>> myUrl = 'http://localhost:8080/geoserver/rest/layers/ne_50m_
populated_places'
>>> headers = {'Accept: text/xml'}
>>> resp = requests.get(myUrl, auth=('admin','password'),
headers=headers)

3. Open the ne_50m_populated_places.xml file; it starts with a styles
collection. You need to insert the code for the new style you created. We don't
need all the elements returned from GeoServer. Modify the file as in the following
code. (Please note that we inserted the enabled element; the default value being
false for it. If you make a PUT and don't explicitly set it to true, your layer will be
modified and disabled):
<layer>
 <styles>
 <style>
 <name>PopulatedPlacesComplex</name>
 </style>
 <style>
 <name>PopulatedPlacesGraphics</name>
 </style>
 <style>
 <name>PopulatedPlacesStroke</name>
 </style>
 <style>
 <name>PopulatedPlacesLabeled</name>
 </style>
 <style>
 <name>PopulatedRotateTransparent</name>
 </style>
 <style>
 <name>PopulatedPlacesBlueLabeled</name>
 </style>
 </styles>
 <enabled>true</enabled>
</layer>

Chapter 9

[263]

4. Now save the file as addStyle.xml and send the PUT request to GeoServer,
to modify the layer's configuration:
curl -u admin:password -XPUT -H 'Content-type: text/xml' -T
addStyle.xml http://localhost:8080/geoserver/rest/layers/ne_50m_
populated_places

5. In Python, the code is as follows:
>>> myUrl = 'http://localhost:8080/geoserver/rest/layers/ne_50m_
populated_places'
>>> file = open(addStyle.xml','r')
>>> payload = file.read()
>>> headers = {'Content-type: text/xml'}
>>> resp = requests.put(myUrl, auth=('admin','password'),
data=payload, headers=headers)

6. Now go to the Layer Preview interface and open the OpenLayers preview for the
ne_50m_populated_places layer; then open the tools and look at the drop-down
list for styles. Is the new one there? Select it and your map should look like the
following screenshot:

What just happened?
You added a new style to an existent layer. You can also change the default style just by
adding the XML code for it in the code sent with the PUT request.

Automating Tasks: GeoServer REST Interface

[264]

We covered the essential operation you should know to use GeoServer's REST
interface. The online documentation covers all of the allowed operations on each
resource. A good approach, when you are not sure what your XML code should
look like to perform a request, is to check the syntax with a GET request on the
same object. When creating your application, you may want to have a look at the
following reference page:
http://docs.geoserver.org/stable/en/user/restconfig/
rest-config-api.html#

Pop quiz – reviewing REST operations
Q1. Can you use REST for stopping publication of data?

1. No, you have to remove a layer for it to no longer be visible.

2. Yes, you can update a layer to "not enabled" with a POST operation.

3. Yes, you may disable a layer with a PUT operation.

Q2. which operations are available on the geoserver/rest/workspaces/<ws>/styles
resource?

1. You can perform GET, POST, DELETE, and PUT.

2. You can perform GET and POST.

3. You can perform GET and DELETE.

Q3. Which protocol can you use with GeoServer's REST interface?

1. Any of the following protocols: HTTP, HTTPS, FTP. REST is an architectural model
implemented on several protocols.

2. HTTP for GET and HTTPS for POST, PUT, and DELETE.

3. The HTTP protocol.

Chapter 9

[265]

Summary
In this chapter we learned how to automate configuration tasks. Using the REST interface,
you can publish data from a remote procedure that check for updates, extract, transform,
and load the data on a filesystem or a spatial database, and then send a request to
GeoServer for configuring and publishing the data.

In the next chapter, we will explore security—a real issue if you are going to deploy your
GeoServer to the Internet.

We will explore how to create a set of users and link them to security policies. Each user
can be profiled to access only a set of data. The most important keywords are users,
groups, and roles. Understanding these topics will enable you to fine-tune the
GeoServer's security system.

10
Securing GeoServer

Before Production

In the previous chapters you've always needed a user ID and password to
manage the GeoServer configuration. However, you could acquire the layers
and maps with anonymous access. For GeoServer security, you used the default
settings that are configured to provide free access to your data for everyone.

While this is quite understandable when you are developing your application,
it is not often a good idea for a real site.

There could be many different reasons for you wanting to hide your services or
at least a part of them. Your maps could be integrated into a site with a security
system requiring your user to log on.

Why should maps be freely available? Users may be linked to different roles,
with some confidential data only visible from a few of them. GeoServer security
can help you secure your data, both in simple and complex cases. If you just
want to publish your maps or if you are going to work with the data of a large
corporation, you should read this chapter carefully.

In this chapter we will cover in detail how to do the following:

 � Add strong cryptography support

 � Add users and set their properties

 � Define groups of users

 � Define roles and link them to groups

 � Filter data access with specific roles

Securing GeoServer Before Production

[268]

Basic security settings
In Chapter 2, Getting Started with GeoServer, we changed the administrator password from
the default of "geoserver" while installing GeoServer. Basic security settings will move you a
little further down the path to building a secure site.

On the panel you will find a drop-down list showing you the active role service. This time you
have just one choice; we will create more role services when we deal with users and roles.
Note that you may have just one active role service.

Next there is a section about encryption. Encrypting parameters in a URL is a good idea. If
you click on the web interface on the styles list and select one, your browser's address bar
should contain this URL:

http://localhost:8080/geoserver/web/?wicket:bookmarkablePage=:org.
geoserver.wms.web.data.StyleEditPage&name=PopulatedPlacesBlueLabe
led

The parameters' names and values are plain text. If you check the flag for encryption and
browse to the same page, you should see something similar to the following URL:

http://localhost:8080/geoserver/web/?x=WK8KbnWoyAA*Q3OCKWLyddwndQL
Z9Nt6J7Y-1UM6swM3VW8ph6pSjk3d0fACbvjC1y5O0RzTKp*78*UMVpUW5ZIGJEnVU
Qe54I2bnpTWj6tEe8bLoclmUg

If there is someone sniffing packets, it is a little bit harder to understand the parameters.

http://localhost:8080/geoserver/web/?x=WK8KbnWoyAA*Q3OCKWLyddwndQLZ9Nt6J7Y-1UM6swM3VW8ph6pSjk3d0fACbvjC1y5O0RzTKp*78*UMVpUW5ZIGJEnVUQe54I2bnpTWj6tEe8bLoclmUg
http://localhost:8080/geoserver/web/?x=WK8KbnWoyAA*Q3OCKWLyddwndQLZ9Nt6J7Y-1UM6swM3VW8ph6pSjk3d0fACbvjC1y5O0RzTKp*78*UMVpUW5ZIGJEnVUQe54I2bnpTWj6tEe8bLoclmUg
http://localhost:8080/geoserver/web/?x=WK8KbnWoyAA*Q3OCKWLyddwndQLZ9Nt6J7Y-1UM6swM3VW8ph6pSjk3d0fACbvjC1y5O0RzTKp*78*UMVpUW5ZIGJEnVUQe54I2bnpTWj6tEe8bLoclmUg
http://localhost:8080/geoserver/web/?x=WK8KbnWoyAA*Q3OCKWLyddwndQLZ9Nt6J7Y-1UM6swM3VW8ph6pSjk3d0fACbvjC1y5O0RzTKp*78*UMVpUW5ZIGJEnVUQe54I2bnpTWj6tEe8bLoclmUg

Chapter 10

[269]

Time for action – enabling strong encryption
GeoServer can store passwords in an encrypted format. You can select the encryption type
from the basic security settings page. We will enable strong encryption by adding a couple of
files to our installation.

1. The first step is getting the files you need. Open your browser and point to
http://www.oracle.com/technetwork/java/javase/downloads/jce-6-
download-429243.html.

We are assuming that you are using Oracle Java™ 6; we installed
it in Chapter 2, Getting Started with GeoServer. If you are using
Oracle Java™ 7, download the files at http://www.oracle.
com/technetwork/java/javase/downloads/jce-7-
download-432124.html. You should not use Java™ 5 or the
previous versions with GeoServer.

2. Accept the license agreement and then the download link will be available. Save the
archive to a convenient folder and explore it:

http://www.oracle.com/technetwork/java/javase/downloads/jce-6-download-429243.html
http://www.oracle.com/technetwork/java/javase/downloads/jce-6-download-429243.html
http://www.oracle.com/technetwork/java/javase/downloads/jce-6-download-429243.html

Securing GeoServer Before Production

[270]

3. There are three files inside the archive. You need to copy the two JAR files to your
<java-home>/lib/security folder:
~/JCE6$ ls -l *jar

-rw-rw-r-- 1 stefano stefano 2500 May 31 2011 local_policy.jar

-rw-rw-r-- 1 stefano stefano 2487 May 31 2011 US_export_policy.
jar

~/JCE6$ sudo mv *jar /usr/lib/jvm/jre1.6.0_37/lib/security/.

4. Now restart Tomcat using the following command:
~/JCE6$ sudo service tomcat restart

5. Open the Security Setting page in the GeoServer web interface. Now you shouldn't
see any warning about strong PBE not being available:

6. Select Strong PBE from the drop-down list and click on the Save button.

What just happened?
Passwords are saved on a filesystem or inside a database and should always be encrypted to
avoid usage by unauthorized users. A stronger encryption makes GeoServer safer, but it is
not enough for a production site. Go to the next section for another hint.

Time for action – changing the master password
You used the admin account on GeoServer to administer it. Silently acting behind the scenes
is another account in GeoServer, called the root account. It is the real super user account
and it is present for your safety. If you disable the admin account, you may find yourself
locked out of GeoServer. In this case you can use the root account to log in and restore the
admin user.

By default the root password is equal to that of admin, but you can change it with the
following steps:

1. Log in as admin or root.

2. Open the Passwords page.

Chapter 10

[271]

3. On the top of the page, click on the link to change the master password:

4. Insert the current master password, which is the same as the admin password, and
then a new one. Click on Change Password:

What just happened?
We changed the master password. If you are in charge of several GeoServer instances and
are not the only one performing administrative tasks on them, the master password may
help you when in need of a disaster recovery.

Defining users, groups, and roles
To ensure data security, you need to recognize who is accessing your layers and your
services. Anonymous access can't be used on secured data.

Security in GeoServer is based on a role system where each role defines a specific function.
You can assign roles to users and groups, that is, assigning functions to real people using
your system.

Securing GeoServer Before Production

[272]

To organize your real users, GeoServer provides you with the user, group, and role concept.
With the first two, you can insert real people into the GeoServer security subsystem and with
roles you can grant rights to real users.

User definition
In GeoServer, a user is someone who can use the system, a real person, or another system.
GeoServer stores a username, uniquely identifying the user, a password, and a set of key/
value pairs to store general information about it. A user can be disabled.

Group definition
A group is a set of users. GeoServer stores a list of usernames belonging to the group and a
group name, uniquely identifying the group. A group can be disabled, but please note that
this only removes the roles deriving from the disabled group and does not disable the users
belonging to the group.

User/group services
Users and groups are stored in a user/group service. This defines the storage medium, XML
files by default or a JDBC Database, the encryption type for passwords, and the password
policy. Although you may have more than one user/group service, you will usually be fine
with the default one.

Roles definition
GeoServer roles are associated with performing certain tasks or accessing particular
resources. Roles are assigned to users and groups, authorizing them to perform the
actions associated with the role.

Time for action – creating users and groups
In order to fully understand how security works in GeoServer, we will use a typical scenario.
Consider an organization working with data in the NaturalEarth workspace. We want
to restrict access to this data only to the organization's members. Inside the organization,
there are a few people editing data to create new data sets or to update existing ones, and
many more members who need to read data to compose maps. There is also a need for an
administrator to keep it all working. Lastly, we need to consider that our GeoServer site also
contains data that is freely available. We are now going to create the security organization
from an unsecured GeoServer.

Chapter 10

[273]

1. We will start creating groups. In the security section of the left pane, select the
Users, Groups, and Roles link. The following screenshot shows you the User Group
Services configured. You will find the default service shipped with GeoServer. We
already changed it to use strong PBE encryption and that's fine. Click on the name to
edit it:

2. Select the Groups tab. The list is empty. Click on Add a new group.

3. Enter NE_Publishers as a group name and leave the group enabled. Don't
assign any role to the new group as we will create specific roles later. Click on
the Save button:

Securing GeoServer Before Production

[274]

4. Repeat the previous step to create NE_Editors and NE_Admins groups. Your list now
shows the three groups as follows:

5. Now switch to the Users tab. Obviously it lists the only existing user, that is, admin,
as shown in the following screenshot:

6. I am pleased to introduce you to Steven Plant, the Natural Earth Data Administrator.
Click on the Add new user link, and add him with a password of your choice:

Chapter 10

[275]

7. Add Steven to the NE_Admins group, then click on the Save button:

8. Repeat the previous step to create a user Michael Ford, a member of NE_Editors
group, and John Smith, a NE_Publishers group member. Your list now shows the
three users:

What just happened?
We just created three users for the three groups and this may seem overkill to you. Consider
them as templates of the real users. While in the real word, we don't want to have too many
administrators, we will probably need several Michaels and Johns processing the data. Now
we need to define what they can do on GeoServer.

Securing GeoServer Before Production

[276]

Time for action – defining roles
A user or a group without any role assigned is useless. It is now time to create roles and
assign them to our users.

1. From the Users, Groups, and Roles section, select the Roles tab. You will find that
two roles already exist. They are the administrative roles assigned to the admin, and
they grant access to all GeoServer configuration. Click on the Edit link as shown in
the following screenshot:

2. You entered the Role service definition. Leave the settings untouched and switch to
the Roles tab. Click on Add new role.

3. Enter NE_VIEWER as a new role name. We don't need a parent role. A child role
inherits all the grants from the parent role, making it useful when you want to
extend a basic role with more grants. Indeed we are going to do this in the next step:

4. Click on the Save button and then repeat the previous step to create the
NE_EDITOR role. This time select NE_VIEWER as the parent role as shown
in the following screenshot:

Chapter 10

[277]

5. Click on the Save button and then repeat the previous step to create the NE_ADMIN
role. This time select NE_EDITOR as the parent role. Once saved, your role's list
should look like the following screenshot:

6. The final step is to associate a role to users or groups. Select the User, Groups
and Roles page from the left pane, then select the groups list and click on the
NE_Publishers group to edit it. Add the NE_VIEWER role to the group and save it:

7. Now click on the NE_Editors group and associate it to the NE_EDITOR role.

8. Finally, associate the NE_Admins group to the NE_ADMIN role.

What just happened?
By defining roles and associating them to the users, we completed the definition of our
organization. Now we need to explore how data are bound to roles and users.

Accessing data and services
GeoServer supports access and control, both at the service level, allowing for the lockdown
of service operations to only authenticated users who have been granted a particular role,
and on a per-layer basis.

Securing GeoServer Before Production

[278]

The two approaches can't be mixed. If you lock down a service to a role, you can't grant the
access on a specific layer to the same role.

When working with layers, you can define rules that specify what a role can do on any
specific layer. The operations controlled are the view, write, and admin access. When
granting read access on a layer, you enable a user to add it on a map; while granting write
access you enable the user to update, create, and delete features contained in the layer. The
admin access level enables the user to update the layer's configuration.

Have a go hero – creating a new shapefile
For the next Time for action section, we need a layer to perform editing. We already have a
bunch of layers loaded from the Natural Earth data sets, but we will need a simpler layer. You
will create a new shapefile inside the Natural Earth Shapes data store, called myLocations.
Use point geometry and EPSG:4326 as the SRS. Add a string attribute and call it NAME.

Time for action – securing layers
We want to protect the Natural Earth data set from unauthorized access, while leaving the
remaining layers freely available to all users. In this section we are going to associate layers
and roles. We will also use the new layer you created for editing.

1. Select Data, under the Security section from the left pane. The rules list shows
the two shipped with the default GeoServer's configuration. Click on the Add
a new rule link.

2. In the rule editing page, select NaturalEarth as the workspace. Leave * as a layer.
Since we want to protect all layers in this workspace, the access mode should be
Read. Select the NE_READER role and move it to the right list by clicking on the
arrow. Click on the Save button to create the reading rule:

Chapter 10

[279]

3. Repeat the previous step to create a writing rule. Select Write as the access mode
and NE_EDITOR as the role.

4. Then create the administration rule. Select Admin as the access mode and
NE_ADMIN as the role. After saving, you will see a rule list like the one
displayed in the following screenshot:

5. Now we will log off from the GeoServer web interface. If you try to access the layer
preview anonymously, you won't see any layer from the Natural Earth workspace
while all the others are still listed.

Securing GeoServer Before Production

[280]

6. Now log on as John Smith, with the password you assigned to him. Going back to
the layer preview, you should see the Natural Earth layers listed. Try the Open Layers
preview page for the 10m_railroads layer. It works and you can use the data to
compose maps such as the following:

7. But John Smith can't edit the styles associated to the layer or any other property. He
would need admin rights granted for it; can you guess who the proper user will be?

8. Log on to GeoServer as Steve Plant. Now the left pane is richer than it was when
you were John, but with fewer features than those visible to the admin. Click on the
Layer link; you will see only the layers belonging to the Natural Earth workspace. You
can split the admin responsibilities with GeoServer Security:

9. If you go on layer preview and select the 10m_railroads layer again, can you see
the map? You can, because of roles inheritance, which you set when creating the
NE roles. So NE_ADMIN inherits all the grants from NE_EDITOR, and hence from
NE_VIEWER.

Chapter 10

[281]

10. We now want to check if Michael Ford can really edit the data. Log out
from GeoServer.

11. From the left pane, select the Demos link. It gets you to a page containing links to
demos applications. We will use the demo requests page to test the security.

WFS is an OGC standard for services delivering you
features instead of their representations, which are
maps. WFS-T is an extension to add features from the
client to the server. This way you can perform editing,
that is, creating, deleting, or updating features. We will
cover WFS in Chapter 12, Going Further: Getting Help
and Troubleshooting.

12. In the demo requests page, select the request for a WFS insert:

13. Remove the code in the body—it's an XML example for a layer shipped with the
GeoServer default configuration—and replace it with the following code. You don't
need to fully understand the code; it basically contains a GML fragment defining the
feature we want to create:
<wfs:Transaction service="WFS" version="1.0.0"
 xmlns:wfs="http://www.opengis.net/wfs"
 xmlns="http://www.opengis.net/ogc" xmlns:NaturalEarth="http://
www.naturalearthdata.com/"
 xmlns:gml="http://www.opengis.net/gml" xmlns:xsi="http://www.
w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengis.net/wfs http://schemas.
opengis.net/wfs/1.0.0/WFS-transaction.xsd
 http://www.naturalearthdata.com/ http://localhost:8080/
geoserver/wfs?request=DescribeFeatureType&service=wfs&vers
ion=1.0.0&typeName=NaturalEarth:myLocations">
 <wfs:Insert>
 <NaturalEarth:myLocations>

Securing GeoServer Before Production

[282]

 <NaturalEarth:the_geom>
 <gml:Point srsName="EPSG:4326">
 <gml:coordinates decimal="." cs="," ts=" ">115.86,-
31.908</gml:coordinates>
 </gml:Point>
 </NaturalEarth:the_geom>
 <NaturalEarth:NAME>Perth</NaturalEarth:NAME>
 </NaturalEarth:myLocations>
 </wfs:Insert>
</wfs:Transaction>

Geography Markup Language (GML) is an OGC standard
defining an XML grammar to describe geographical features. It is
often used as an interchange format for spatial transactions.
For more information visit the following link:
http://www.opengeospatial.org/standards/gml.

14. Click on the Submit button. A form showing you the result will appear, shown
as follows:

15. The message is not unexpected. We are trying to insert a point in a feature type with
anonymous access, while we previously defined a rule granting write access only
to the NE_Editors group's members. In the demo request page, enter the proper
credentials and try editing again:

Chapter 10

[283]

16. This time the response shows us that GeoServer has accepted our insert request:

17. Repeat the previous step to insert other locations with the following values:

Brisbane 153.030 -27.450

Sydney 151.210 -33.868

Melbourne 144.974 -37.812

Darwin 130.839 -12.455

18. Now open the myLocations layer's configuration, update its Bounding Boxes, and set
the style to PopulatedPlacesLabeled. Then open the layer preview for it; in the map
you should see the five locations you created:

Securing GeoServer Before Production

[284]

What just happened?
We completed the security scenario. By defining rules for data access, we restricted what a
user can perform on the data and we also tried impersonating the users we created. Unless
you know the admin password, there is no way to bypass the security system and access
restricted data.

Pop quiz – reviewing security
Q1. Can you set grants on data directly to a user?

1. Yes, you can create a rule and link it to a single user.

2. No, you can only link a rule to a role.

3. Yes, but you have to define a group with a single user and then link the proper rule
to that group.

Q2. How many groups can you define in GeoServer?

1. Three groups: one for data reading, one for data creation, and one for
data administration.

2. Many groups for data reading but only one for data creation and administration.

3. You can have an unlimited set of groups in GeoServer.

Summary
We took a brief journey through GeoServer security. From the plain installation, which ships
with a very low security level, we learned how to create users and give them grants to access
data and perform tasks on GeoServer.

We have just covered a small subset of the wide range of topics that GeoServer has to offer.

GeoServer can integrate with Enterprise security. You can have users and roles defined in an
external LDAP repository.

In the next chapter we will focus on performance, which is a big challenge when you
eventually deploy your site in production. Users might wait in anticipation for your maps,
but if it takes too long to download them, they will soon abandon your site.

11
Tuning GeoServer in a

Production Environment

Everyone hates slow websites; web maps are no exception. Your users will look
for a nice user experience with the map promptly reacting to their input.

Speed is not the only factor you need to take into account. As a user you will
be expect that the site is usually available; frequent downtime will make your
users go away to some other website.

In this chapter we will cover the configuration of GeoServer to optimize
its speed and availability. We have already learned how to cache layers
for optimizing the map speed using GWC. It is a great tool and proper
configuration can boost your map's performances. However, caching is not
always feasible, such as in cases of frequently changing data, hence GeoServer
offers you other tools to increase performance.

In this chapter, we will cover the following topics in detail:

 � Optimizing runtime parameters for JVM

 � Improving image manipulation performance using JAI

 � Using a proxy

 � Creating a GeoServer cluster

Tuning GeoServer in a Production Environment

[286]

Tuning Java
When we installed Tomcat, we didn't play with the JVM settings. Tomcat's startup script
is configured for booting quickly, but of course it can't match all the requirements of the
application. Tuning your Java runtime parameters can greatly increase performance. There
are many runtime parameters you can set at JVM startup. In the following section you will
set the parameters that are most effective on GeoServer performances. Note that the values
may vary according to the hardware configuration on your site.

Unfortunately, there is no way to cut corners on the path of tuning parameters
for a Java application. While the options presented in this chapter have been
widely tested on GeoServer and are recommended by core developers, you
should note that the best options may vary depending on your scenario. A
valuable resource to understand how each parameter works is at http://
www.oracle.com/technetwork/java/javase/tech/vmoptions-
jsp-140102.html.

Time for action – configuring Java runtime parameters
In Chapter 2, Getting Started with GeoServer, we created a startup script for automated
startup of GeoServer on Linux. Now you will edit the script and add proper values for the
Java runtime parameters. Each parameter will be briefly described in the following steps:

1. Open the startup file for editing:
~$ sudo vi /etc/init.d/tomcat

vi is one the most famous editors on Linux. System
Administrators and developers often love it for its flexibility and
power. On the other hand it has provides a steep learning curve,
where newcomers may find its command mode/insert mode,
dual nature uncomfortable. On Debian distribution you may find
nano, which is a more user-friendly console editor. And it goes
without saying that you can use a powerful IDE such as Gedit or
Jedit if you can access a desktop environment.

2. Locate the following line; if you didn't modify the script created in Chapter 2, Getting
Started with GeoServer, it should be on line 16:
export JAVA_OPTS="-Djava.awt.headless=true"

Chapter 11

[287]

3. Insert a new line just before it. The first parameter that you are going to tune is
the HEAP size. It really depends on the available memory on your system. 2 GB, as
indicated, is a good figure. You may want to decrease it if you are hosting it on a tiny
cloud machine where the total memory size is limited. Type the following values on
the new line:
HEAP="-Xms2048m -Xmx2048m"

4. Now add a second line and insert the following code. You are reserving space for the
new objects created by GeoServer. These values shouldn't be more than a quarter of
the heap size, so reduce them proportionally if you need to reduce your heap:
NEW="-XX:NewSize=256m -XX:MaxNewSize=256m"

5. Add a line and insert a value to avoid the RMI-induced Full GCs from running too
frequently; once every 10 minutes should be more than enough:
RMIGC="-Dsun.rmi.dgc.client.gcInterval=600000 -Dsun.rmi.dgc.
server.gcInterval=600000"

6. Add a line to use the Parallel Garbage Collector that enables multithreaded garbage
collection and improves performance if more than two cores are present:
PGC="-XX:+UseParallelGC"

7. Now increase the maximum size of the permanent generation (or permgen)
allocated to GeoServer. This is the heap portion where the bytecode class is stored.
GeoServer uses lots of classes, and hence it may exhaust that space quickly, leading
to out of memory errors:
PERM="-XX:PermSize=256m -XX:MaxPermSize=256m"

8. Finally, add some tracing to help us in case things go astray:
DEBUG="-verbose:gc -XX:+PrintTenuringDistribution"

9. Always dump on Out Of Memory (OOM). It does not cost anything unless triggered:
DUMP="-XX:+HeapDumpOnOutOfMemoryError"

10. The last set is for forcing the server JVM. On most Linux systems, it is the default,
but having it explicitly set doesn't cause any harm:
SERVER="-server"

11. Now go to the line XX and add all the values you set in the JAVA_OPTS variable. The
JVM reads it at startup and will use your values:
export JAVA_OPTS="-Djava.awt.headless=true $HEAP $NEW $RMIGC $PGC
$PERM $DEBUG $DUMP $SERVER"

12. Save the file and restart your Tomcat.

Tuning GeoServer in a Production Environment

[288]

What just happened?
You customized the Java runtime environment hosting GeoServer. If you are on a Windows
machine, you can insert the values in the Tomcat Configuration Console. Go to the Java tab
and insert each parameter on a new line in the Java Options textbox. You can insert the heap
size in the textboxes called Initial memory pool and Maximum memory pool.

Time for action – installing native JAI
Java Advanced Imaging (JAI) is a library developed by Oracle for advanced image
manipulation. GeoServer can run without it, as it is shipped with a pure Java version of JAI.
Installing JAI greatly improves performance when working with images, that is, raster format
data. If you are not going to use spatial raster data, GeoServer works with image formats
when you ask for a map, for example, in a WMS GetMap request, so it is really worthwhile
to have it on your production site:

1. Download the proper package for your system, Linux or Windows, from
http://download.java.net/media/jai/builds/release/1_1_3/:
~$ wget http://download.java.net/media/jai/builds/release/1_1_3/
jai-1_1_3-lib-linux-amd64-jre.bin

Chapter 11

[289]

2. Copy the file into the folder where you installed the JRE and then run it:
~$ sudo cp jai-1_1_3-lib-linux-amd64-jre.bin /usr/lib/jvm/
jre1.7.0_04/.

~$ cd /usr/lib/jvm/jre1.7.0_04/

~$ sudo sh jai-1_1_3-lib-linux-amd64-jre.bin

3. The program prompts you for the license agreement; scroll down to read it and
accept the agreement at the end:
UnZipSFX 5.50 of 17 February 2002, by Info-ZIP (Zip-Bugs@lists.
wku.edu).

 inflating: COPYRIGHT-jai.txt

 inflating: DISTRIBUTIONREADME-jai.txt

 inflating: LICENSE-jai.txt

 inflating: THIRDPARTYLICENSEREADME-jai.txt

 inflating: UNINSTALL-jai

 inflating: lib/amd64/libmlib_jai.so

 inflating: lib/ext/jai_core.jar

 inflating: lib/ext/jai_codec.jar

 inflating: lib/ext/mlibwrapper_jai.jar

Done.

4. Now copy the JAI-IO package from
http://download.java.net/media/jai-imageio/builds/release/1.1/:
~$ wget http://download.java.net/media/jai-imageio/builds/
release/1.1/jai_imageio-1_1-lib-linux-amd64-jre.bin

5. Again, copy the file into the folder where you installed the JRE and then run it. If you
are running GeoServer on Ubuntu, you should add an environment variable as in the
following lines. In this case too you are required to accept the license agreement:
~$ sudo cp jai_imageio-1_1-lib-linux-amd64-jre.bin /usr/lib/jvm/
jre1.7.0_04/.

~$ cd /usr/lib/jvm/jre1.7.0_04/

~$ sudo su

~$ export _POSIX2_VERSION=199209

~$ sh jai_imageio-1_1-lib-linux-amd64-jre.bin

UnZipSFX 5.50 of 17 February 2002, by Info-ZIP (Zip-Bugs@lists.
wku.edu).

 inflating: COPYRIGHT-jai_imageio.txt

 inflating: DISTRIBUTIONREADME-jai_imageio.txt

 inflating: ENTITLEMENT-jai_imageio.txt

Tuning GeoServer in a Production Environment

[290]

 inflating: LICENSE-jai_imageio.txt

 inflating: THIRDPARTYLICENSEREADME-jai_imageio.txt

 inflating: UNINSTALL-jai_imageio

 inflating: lib/amd64/libclib_jiio.so

 inflating: lib/ext/jai_imageio.jar

 inflating: lib/ext/clibwrapper_jiio.jar

Done.

6. You can now remove the two archives you have downloaded:
~$ rm jai_imageio-1_1-lib-linux-amd64-jre.bin

~$ rm jai-1_1_3-lib-linux-amd64-jre.bin

7. Stop your Tomcat service:
~$ sudo service tomcat stop

8. Now remove the pure Java version of JAI:
~$ cd /opt/apache-tomcat-7.0.27/webapps/geoserver/WEB-INF/lib/

~$ sudo rm jai_codec-1.1.3.jar

~$ sudo rm jai_core-1.1.3.jar

~$ sudo rm jai_imageio-1.1.jar

9. Restart the Tomcat service:
~$ sudo service tomcat start

10. Open the GeoServer web interface and go to the Server status page. You can now
see that it is using Native JAI:

What just happened?
You installed JAI libraries for advanced imaging manipulation. This will make your GeoServer
faster at writing rasters, for example, when preparing a response to a GetMap request.
Although tuning Java can greatly improve your server performances, there is another
little step that is often forgotten: removing unneeded features.

Chapter 11

[291]

Removing unused services
In this book we mainly used GeoServer as a map server. In fact, GeoServer ships with three
OGC services enabled: WMS, WFS, and WCS. If you are only going to use GeoServer to
produce maps, you should disable WCS and WFS, or at least set them to read-only mode.
We use WFS-T for editing data in the chapter about security. If your data is static, the most
secure way to avoid accidental updating or deleting is to disable WFS-T.

Web Coverage Services is the analogue of WFS for raster. We will briefly
introduce it in Chapter 12, Going Further: Getting Help and Troubleshooting,
but chances are that you won't need it.

Time for action – disabling unused services
Now you should turn off WMS and WFS, or WFS-T, according to your needs:

1. Open the GeoServer web interface. On the left pane, you can see the Services
category and under it WCS, WFS, and WMS are listed. Select WCS.

2. Remove the flag from the Enable WCS checkbox to disable the service and click on
the Submit button:

3. Now select WFS in the Services category. If you don't want to deliver features to
your users, disable the service as you did for WCS:

4. If you want to give your user an option to download geometry, leave the service
enabled. Scroll down until you find the Maximum number of features textbox. This
value limits the number of records returned on a single GetFeature request. Lower
the default value to 10000:

Tuning GeoServer in a Production Environment

[292]

5. In the very next section, set the Service Level option. Select Basic and then click on
the Submit button:

6. Now select WMS in the Services category. Of course you want to disable the WMS
service, but you can set some values to optimize map rendering.

7. Scroll down to the Resource consumption limits section. The three values limit the
amount of memory, time, and errors that GeoServer can use while rendering a map.
Set the memory to 20480, which is enough for a full screen map:

8. Click on the Submit button to save your settings.

What just happened?
Disabling unneeded services improves resource usage and helps you to avoid out of memory
errors. The more features you discard from GeoServer, the fewer classes it will need to load
in the memory.

Setting a proxy
Whether you are using GeoServer on Tomcat or you installed Jetty, it is not a good idea to
expose it directly to your users, especially if they are on the Internet. A safer option is to use
a more stable web server, such as Apache httpd—one of the most popular and widely used
web servers across the Web. To expose GeoServer, or more generally, a Java application from
the web server, you need to set a proxy on the web server. Users will point to an alias and
their requests will be redirected to Tomcat, more safely deployed in a protected LAN.

Chapter 11

[293]

Time for action – configuring a proxy
We will configure the Apache HTTP web server to act as a proxy for GeoServer. First of all we
need to get it working; you will learn that just like many other open source projects, this is
surprisingly simple!

1. To install Apache on Linux, you can use the distribution repository. At the time of
writing, it installs release 2.2.22 for Ubuntu. You can also download and install a
binary package from http://httpd.apache.org/download.cgi. The following
line is the only way if you are on Windows:
~$ sudo apt-get install apache2

2. If your server is not registered on a DNS you should insert the full hostname inside
the site's configuration file. Open the following file:
~$ sudo vi /etc/apache2/sites-available/default

3. Insert the following code as the first line of the file:
~$ ServerName ubuntu1204x64vm

Note that if you perform a manual installation of Apache
or if you are on a Windows machine, the file and folder
locations are different from those shown.

4. Point your browser to http://localhost. If the installation was successful, you
should see the following It works! message:

5. The proxy capabilities are contained in some optional modules. You can find which
modules are available on your system:
~$ ls /etc/apache2/mods-available | grep proxy

proxy_ajp.load

proxy_balancer.conf

proxy_balancer.load

proxy.conf

Tuning GeoServer in a Production Environment

[294]

proxy_connect.load

proxy_ftp.conf

proxy_ftp.load

proxy_http.load

proxy.load

proxy_scgi.load

6. For configuring a proxy, you need the proxy and proxy_ajp modules. Enable them
using the command line tool a2enmod. After that you need to restart the Apache
service:
~$ sudo a2enmod proxy proxy_ajp

~$ sudo service apache2 restart

7. Now you will configure a proxy; edit the http.conf file:
~$ sudo vi /etc/apache2/httpd.conf

8. You have to insert a ProxyPass directive in the Apache configuration file. With the
following syntax, you are informing the web server that each incoming request for /
geoserver will be forwarded to your host on port 8009 using the ajp protocol:
ProxyPass /geoserver ajp://localhost:8009/geoserver
<Location /geoserver>
 Order deny,allow
 Deny from all
 Allow from 127.0.0.1
</Location>

9. Now open your browser and point it to http://localhost/geoserver/web/:

Chapter 11

[295]

10. It works! You can now use GeoServer pointed to your web server and ignore where
GeoServer is deployed.

What just happened?
You learned the basic method of configuring Apache to act as a proxy. Properly configuring
a web server for security is far out of the scope of this book, but you should keep in mind
that the HTTP protocol exposed by Tomcat and Jetty is not intended for real Internet use. You
should always avoid deploying GeoServer in a DMZ (http://en.wikipedia.org/wiki/
DMZ_(computing)).

Avoiding service faults
GeoServer is a great software, and core developers hit bugs every day, enhance existing
functions, and deliver new capabilities. Despite all of this, and the careful configuration of
your site, it is just a matter of time before you will encounter a failure that prevents your
GeoServer from delivering maps. In the simplest of cases, it will only affect some specific
requests; more often it will halt it for a while, and sometimes you will need to restart it to
get it working again.

It happens to almost all the software applications that you will have worked with, either
proprietary or open source, free of charge or very expensive. Avoiding faults is out of
your control, but you should learn how you can manage avoiding service interruption.

A high availability or fault tolerant configuration is what you need. Indeed, this a very
common approach in software deployment and what you will learn here is best practice
for any kind of software service, not only for the map services.

So how do you get a fault tolerant configuration? It's all about redundancy, if you can't avoid
faults you can yet eliminate a single point of failure. In fault tolerant configurations, a single
point of failure is a part of both hardware and software that doesn't have a spare companion
to succeed in its job if it fails.

The basic idea is quite simple but very effective. If you have two GeoServers working in
parallel, they probably won't break at the same time. So while you, or even better, an
automated procedure, work to restore the broken instance, the other GeoServer will
continue to process the users' requests. From the users' point of view, there is no fault;
he can only experience a slowdown in the response time. Of course, this model can be
implemented with far more than just two instances of GeoServer; you may have a lot of
them. This model will not only make your system more reliable, but it will also greatly
improve your site's performance.

Tuning GeoServer in a Production Environment

[296]

Of course, having two GeoServers is not enough. First of all, their configuration needs to be
synchronized; besides, you need a way to share requests among the instances. Indeed, you
need a load balancer to distribute the request load across a pool of servers.

The previous diagram displays all the components of a fault tolerant configuration.
Starting from the right, we find two repositories designed with the symbol usually used for
databases: one holds the configuration files and the other stores the data. As you learned
in the previous chapters, GeoServer's configuration is contained in a folder. This folder is
contained inside war; so when you deploy it on Tomcat, it is contained in the geoserver
folder. You can put it on an external filesystem to make it accessible by all instances.

Note that to avoid a single point of failure and corruption in access contention,
you can't simply copy the configuration folder on a server and have all your
GeoServers pointing to it. You need to copy it on a special filesystem thought
to be simultaneously mounted on multiple servers; these filesystems are
called Cluster File System. Of course, the same issue applies to data not in
an RDBMS, for example, shapefiles. For more information, take a look at
http://en.wikipedia.org/wiki/Clustered_file_system.

The data store may be an RDBMS, for example, a PostGIS server, or a folder containing
shapefiles and georeferenced images.

Going leftwards, you will find two GeoServers. Note the lines connecting to both data and
configuration. They are differently styled just to make the connected items clear, but their
function is the same. Each GeoServer needs to access the same configuration store and data
store to expose exactly the same layers.

Chapter 11

[297]

On the left of the map servers there are a couple of web servers. You learned that they
act as a proxy for GeoServer, here they also balance the load among them. We will see the
configuration's details in the Time for action – configuring a cluster section; for now you
should note that each web server is connected to each GeoServer. This way if one of them
fails, the other will forward requests to the map servers.

In front of the web servers there is a component called Router. From a logical point of
view, it is a balancer that associates all your web servers to a single IP address. It may be
a hardware or a software component; see http://en.wikipedia.org/wiki/Load_
balancing(computing) for a discussion and a list of implementations.

Eventually we find the users. They are unaware of the architectural complexity; they just
have an entry point for the map service to forward the requests. The cluster configuration
takes care of the requests, dispatching them to a GeoServer and returning the responses.

There is an important fact to keep in mind. WMS, WFS, and WCS are stateless. There is no
session state to maintain across the client requests, so you don't need to synchronize session
data among your servers. A user request may be filled by server1 and then dispatched to
server2. The request's body contains all the information needed by server2 to process the
request. This greatly reduces complexity and you can cluster your configuration just by
implementing load balancing and redundancy.

Time for action – configuring a cluster
In the configuration schema, we didn't mention the hardware. Of course, having software
redundancy while deploying all components on a single physical server is not a good idea.
You can deploy each component on a separate server (and in modern server farm they will
probably be virtual ones), but the basic idea is that you should never have all the instances
of a component on a single machine.

For the sake of simplicity, and to save you having to buy a lot of hardware, we will use a
single Linux machine in the following section:

1. As a first step, we will relocate the configuration folder out of the GeoServer web
archive. Stop the Tomcat service:
~$ sudo service tomcat stop

2. Now move the folder to an external location:
~$ sudo mv /opt/apache-tomcat-7.0.27/webapps/geoserver/data /opt/
geoserver_config

Tuning GeoServer in a Production Environment

[298]

3. Now you have to edit the web.xml file to make GeoServer aware of the new
configuration folder:
~$ sudo vi /opt/apache-tomcat-7.0.27/webapps/geoserver/WEB-INF/
web.xml

4. Locate the following commented code fragment:
<!--
 <context-param>
 <param-name>GEOSERVER_DATA_DIR</param-name>
 <param-value>C:\eclipse\workspace\geoserver_trunk\cite\
confCiteWFSPostGIS</param-value>
 </context-param>
-->

5. Remove the first and last line to uncomment it and insert the location of the new
folder in the param-value element:
 <context-param>
 <param-name>GEOSERVER_DATA_DIR</param-name>
 <param-value>/opt/geoserver_config</param-value>
 </context-param>

6. Save the file and then restart the Tomcat service:
~$ sudo service tomcat start

7. Log in to GeoServer and check that the configuration was properly read. Now we
need a second Tomcat instance. Again, stop the Tomcat service, and copy it to a
new location:
~$ sudo cp -r /opt/apache-tomcat-7.0.27 /opt/new_apache-
tomcat-7.0.27

8. With two different servers you could leave the Tomcat configuration untouched
and it would work perfectly. But when you have both on the same machine and you
start them, they will try to bind to the same TCP port (for example, 8080 for HTTP
protocol), and one of them will fail in doing so. Open the server.xml file of the
new Tomcat with an editor:
~$ sudo vi /opt/new_apache-tomcat-7.0.27/conf/server.xml

9. Locate the following code—it is the first uncommented line—and modify
Server port to 8105:
<Server port="8105" shutdown="SHUTDOWN">

Chapter 11

[299]

10. Now look for the code section where the HTTP connector is configured. Change
connector port to 8180:
<Connector port="8180" protocol="HTTP/1.1"
 connectionTimeout="20000"
 redirectPort="8443" />

11. Scroll down until you find code for the AJP connector and modify the port number
to 8109:
<Connector port="8109" protocol="AJP/1.3" redirectPort="8443" />

12. Save the file and close it. Before starting the two Tomcat servers, we need to add a
couple of parameters for JVM, otherwise integrated GWC will lock the data folder
and only one GeoServer will be able to start:
~$ sudo vi /etc/init.d/tomcat

13. Just after the line setting the -server parameter, insert the following:
GWC="-DGWC_DISKQUOTA_DISABLED=true -DGWC_METASTORE_DISABLED=true"

14. Add the GWC variable in the line setting JAVA_OPTS:
export JAVA_OPTS="-Djava.awt.headless=true $HEAP $NEW $RMIGC $PGC
$PERM $DEBUG $DUMP $SERVER $GWC"

15. Save the file, then open the startup script for the new Tomcat server:
$ sudo vi /opt/new_apache-tomcat-7.0.27/bin/catalina.sh

16. Insert a new line, just after the initial comments, and set the same parameters:
JAVA_OPTS="-DGWC_DISKQUOTA_DISABLED=true -DGWC_METASTORE_
DISABLED=true"

17. Save the file.

18. Now we can start the two Tomcat servers. You can start the old one with the
service command utility. To start the newly created one you will use the default
startup script:
~$ sudo /opt/new_apache-tomcat-7.0.27/bin/startup.sh

19. Now open your browser and point to http://localhost/geoserver, and to
http://localhost:8180/geoserver. Go to the Layer Preview page; now you
see the same layers list as expected.

Tuning GeoServer in a Production Environment

[300]

20. Now we need to set a proxy for both the Tomcat servers and add a balancer.
This is delivered by apache httpd mod_proxy_balancer. Enable it using
the following script:
~$ sudo a2enmod proxy_balancer

~$ sudo service apache 2 restart

21. In order to change the proxy configuration, you have to edit the httpd.conf file:
~$ sudo vi /etc/apache2/httpd.conf

22. We need to modify the ProxyPass directive. Comment the lines you inserted in the
previous Time for action – configuring a proxy section, by inserting a # character at
line start. Then insert the following code:
ProxyPass /geoserver balancer://geoserver
<Proxy balancer://geoserver>
 BalancerMember ajp://localhost:8009/geoserver
 BalancerMember ajp://localhost:8109/geoserver
 Order deny,allow
 Deny from all
 Allow from 127.0.0.1
</Proxy>

23. Save the file and restart the Apache service. Now open your browser and go to
http://localhost/geoserver. Apache will forward your request to one of
the two GeoServers.

24. You may wonder how the balancer works, how it balances requests, and what
happens if a server fails. Apache mod_proxy_balancer comes with a practical
interface to manage and monitor the balancer. You have to explicitly expose it in
the httpd.conf file:
~$ sudo vi /etc/apache2/httpd.conf

25. Insert the following code:
<Location /balancer-manager>
 SetHandler balancer-manager
 Order Deny,Allow
 Deny from all
 Allow from 127.0.0.1
</Location>

26. From your browser, open http://localhost/balancer-manager:

Chapter 11

[301]

27. From the web interface, you can monitor the main parameters for each node of the
configuration. The status tells you if the node is working or if it is down. Right next
to it you can find the number of requests that each node processed since the service
started. The method field shows you how the requests are distributed. The default
mode to perform weighted request counting is byrequests. You can also modify
it to bytraffic, to perform weighted traffic byte count balancing. By default each
node is assigned an equal load, but you can distribute traffic asymmetrically using
the loadfactor parameter. Let's change our configuration to split 75 percent of
the requests to one node and the remaining 25 percent to the other:
<Proxy balancer://geoserver>
 BalancerMember ajp://localhost:8009/geoserver loadfactor=1
 BalancerMember ajp://localhost:8109/geoserver loadfactor=3
 Order deny,allow
 Deny from all
 Allow from 127.0.0.1
</Proxy>

Tuning GeoServer in a Production Environment

[302]

28. Restart the Apache service, then open the GeoServer web interface, and navigate it
to send a few requests. If you now open the balancer-manager interface again, the
page should look as follows:

29. You can also set a node as a host stand-by. The balancer will fetch requests to it in
case the node fails. To set a backup, you have to insert the status=+H parameter:

<Proxy balancer://geoserver>
 BalancerMember ajp://localhost:8009/geoserver status=+H
 BalancerMember ajp://localhost:8109/geoserver
 Order deny,allow
 Deny from all
 Allow from 127.0.0.1
</Proxy>

What just happened?
You learned how to configure a simple yet effective high availability configuration. In this
section we didn't introduce any router; this task is usually performed by network engineers
and you are safe knowing that it has to be done.

Chapter 11

[303]

Pop quiz – production environment
Q1. How can you tune the environment for JVM?

1. You should use a 64-bit JVM version; it performs much better than the 32-bit one.

2. You have to launch a console window on your server and set the global
environment variables.

3. You have to set custom values for JVM startup parameters in the script used to
start GeoServer.

Q2. How can you reduce the downtime for your map service?

1. Using an improved hardware.

2. Optimizing your data.

3. Setting redundant items for each component of your configuration.

Summary
In this chapter we discussed basic considerations to safely deploy the GeoServer
in production.

Deploying a successful configuration requires you to take care of several topics. JVM
optimization may enhance performances, and a high availability configuration can rock your
GeoServer. Although, as a beginner, some of the issues may seem out of your scope for now,
it is important to know where to focus your attention when planning a new installation.
Most of the times you will be working with system and network engineers knowing very little
about map servers. You will be expected to guide them in identifying the critical details in
the configuration.

In the next chapter, we will focus on the next steps to take once you are confident with
GeoServer, how to get further help, and what else GeoServer can offer you that we didn't
cover in this book.

12
Going Further: Getting Help and

Troubleshooting

Our journey into GeoServer is coming to an end. What you have learned should
enable you to create a map service and make your data accessible to everyone
on the Internet.

GeoServer is far more complex than what we have covered so far. There are lots
of advanced features for data sharing and performing spatial analysis.

In this chapter we will briefly cover some advanced features, for example, other standard
protocols supported by GeoServer, and how to get help and also how to collaborate the
project. We will cover the following topics in detail:

 � Web Feature Service (WFS)
 � Web Coverage Service (WCS)
 � Online resources
 � Future steps (maybe!)

Going beyond maps
We focused on the maps in the book and almost always used the WMS protocol in our
examples. As you learned in Chapter 1, GIS Fundamentals, a map is a representation of data.
A map can include vector or raster data, but it always represents them as a raster output,
that is, an image. While maps are an easy and useful way to show your data, there are other
scenarios where users need not use a representation, but the original data, for example, to
process the data on a client-side task. Here, two other OGC protocols come into use: WFS
and WCS.

Going Further: Getting Help and Troubleshooting

[306]

Delivering vector data
If a user needs to get your vector data, for example, the USA railroads, he can use the Web
Feature Service (WFS) protocol. It is a standard protocol defined by OGC that refers to the
sending and receiving of geospatial data through HTTP.

When delivering data, the most important thing to define is the data format. Vector
data is usually stored in a binary format—think of a shapefile or a PostGIS table—but for
practical purposes we need a more standard approach. Indeed, WFS encodes and transfers
information in Geography Markup Language (GML), based on XML.

There exist a few versions of WFS and GML. The current GeoServer release supports the
1.0.0, 1.1.0, and 2.0.0 WFS versions.

You can find the full reference for WFS and GML at the OGC repository at
http://www.opengeospatial.org/standards/is; look for:

 � OpenGIS Geography Markup Language (GML) Encoding Standard
 � OpenGIS Web Feature Service (WFS) Implementation Specification

WFS defines a set of operations that a user can perform on data. You used transactional
operations in Chapter 10, Securing Your GeoServer Before Production, for data editing. We
will now focus on retrieving data.

Time for action – retrieving vector data
We will use WFS to get vector data encoded in GML. In case you disabled it, as we did in
Chapter 11, Tuning GeoServer in a Production Environment, you will need to enable the
WFS in GeoServer. Open your command-line console; we are going to use curl for
sending requests:

1. The first operation that we will use is GetCapabilities. It describes which feature
types and operations are available on the server:
~$ curl -XGET "http://localhost/geoserver/wfs?service=wfs&version=
1.0.0&request=GetCapabilities" -o getCapabilities.xml

2. The XML returned is quite huge; the following lines show you the brief description
for a featuretype element:
<FeatureType>
 <Name>NaturalEarth:10m_railroads</Name>
 <Title>10m_railroads</Title>
 <Abstract/>
 <Keywords>10m_railroads, features</Keywords>

Chapter 12

[307]

 <SRS>EPSG:4326</SRS>
 <LatLongBoundingBox minx="-150.08159339101002"
miny="8.329046942181577" maxx="-59.94810950429127"
maxy="64.93097565311908"/>
</FeatureType>

3. If you need to use a featuretype element, for example, railroads, you probably
need the full description. You can get it using the DescribeFeatureType
operation, which returns an XML code containing a description for the
featuretype element you requested. Note that you can omit the TypeName
parameter; in this case you get the full list for the featuretype element,
ordered by workspace:
~$ curl -XGET "http://localhost/geoserver/wfs?service=wfs&versi
on=1.0.0&request=DescribeFeatureType&TypeName=NaturalEarth:10m_
railroads" -o railroads.xml

4. The response contains that feature type's detailed description. You can find the
name and type of each attribute:
<?xml version="1.0" encoding="UTF-8"?>
…
 <xsd:complexType name="10m_railroadsType">
 <xsd:complexContent>
 <xsd:extension base="gml:AbstractFeatureType">
 <xsd:sequence>
 <xsd:element maxOccurs="1" minOccurs="0" name="the_geom"
nillable="true" type="gml:MultiLineStringPropertyType"/>
 <xsd:element maxOccurs="1" minOccurs="0"
name="ScaleRank" nillable="true" type="xsd:int"/>
 <xsd:element maxOccurs="1" minOccurs="0"
name="FeatureCla" nillable="true" type="xsd:string"/>
 <xsd:element maxOccurs="1" minOccurs="0" name="SOV_A3"
nillable="true" type="xsd:string"/>
 <xsd:element maxOccurs="1" minOccurs="0" name="UIDENT"
nillable="true" type="xsd:int"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
…

5. Now we will retrieve the features. The GetFeature operation retrieves them from
the GeoServer. To avoid getting a huge number of features, you can limit the number
of elements returned with the maxFeatures parameter:
~$ curl -XGET "http://localhost/geoserver/wfs?service=wfs&
version=1.1.0&request=GetFeature&TypeName=NaturalEarth:10m_
railroads&maxFeatures=1" -o getFeature.xml

Going Further: Getting Help and Troubleshooting

[308]

6. The XML code returned contains GML for the single feature that we specified. In
this case we have a single lineString element with a lot of vertices listed in the
gml:coordinates element:
<gml:boundedBy>
 <gml:null>unknown</gml:null>
</gml:boundedBy>
<gml:featureMember>
 <NaturalEarth:10m_railroads fid="10m_railroads.1">
 <NaturalEarth:the_geom>
 <gml:MultiLineString srsName="http://www.opengis.net/
gml/srs/epsg.xml#4326">
 <gml:lineStringMember>
 <gml:LineString>
 <gml:coordinates xmlns:gml="http://
www.opengis.net/gml" decimal="." cs="," ts=" ">-
147.67979896,64.81824372 -147.69432532,64.83020661
-147.70750892,64.83808015
…
 -148.96648109,60.85010407 -148.9647721,60.83167145</
gml:coordinates>
 </gml:LineString>
 </gml:lineStringMember>
 </gml:MultiLineString>
 </NaturalEarth:the_geom>
 <NaturalEarth:ScaleRank>8</NaturalEarth:ScaleRank>
 <NaturalEarth:FeatureCla>Railroad</
NaturalEarth:FeatureCla>
 <NaturalEarth:SOV_A3>USA</NaturalEarth:SOV_A3>
 <NaturalEarth:UIDENT>1506</NaturalEarth:UIDENT>
 </NaturalEarth:10m_railroads>
</gml:featureMember>

7. Limiting the elements returned with maxFeatures is ok for a sample request. In
general, you want to have more control over the number and types of features
you want to extract. Indeed, you can filter them with a spatial operator or with
alphanumerical filtering on attributes. In the following sample, we use the bbox
operator to filter the railroad elements that intersect an extent:
~$ curl -XGET "http://localhost/geoserver/wfs?service=wfs&version
=1.0.0&request=GetFeature&TypeName=NaturalEarth:10m_railroads&bb
ox=-116.68,36.29,-111.36,39.90" -o getBboxFeature.xml

Chapter 12

[309]

8. The request again returns a single feature but the root element is
FeatureCollection. If your try to extend bbox, more features will
be listed inside it:

<wfs:FeatureCollection
…
>
 <gml:boundedBy>
 <gml:null>unknown</gml:null>
 </gml:boundedBy>
 <gml:featureMember>
 <NaturalEarth:10m_railroads fid="10m_railroads.481">
 <NaturalEarth:the_geom>
 <gml:MultiLineString srsName="http://www.opengis.
net/gml/srs/epsg.xml#4326">
 <gml:lineStringMember>
 <gml:LineString>
 <gml:coordinates xmlns:gml="http://
www.opengis.net/gml" decimal="." cs="," ts=" ">-
116.86064613,34.86170075 -116.85924232,34.86536286
 ...
 -112.16722572,40.70233796
-112.15178382,40.70752595</gml:coordinates>
 </gml:LineString>
 </gml:lineStringMember>
 </gml:MultiLineString>
 </NaturalEarth:the_geom>
 <NaturalEarth:ScaleRank>8</NaturalEarth:ScaleRank>
 <NaturalEarth:FeatureCla>Railroad</
NaturalEarth:FeatureCla>
 <NaturalEarth:SOV_A3>USA</NaturalEarth:SOV_A3>
 <NaturalEarth:UIDENT>49706</NaturalEarth:UIDENT>
 </NaturalEarth:10m_railroads>
 </gml:featureMember>
</wfs:FeatureCollection>

What just happened?
You learned how to use WFS for retrieving data with all the geometrical and alphanumerical
details. Combining the retrieval with the capabilities to insert or update data (WFS-T), you
can build an online editing system for vector data.

Going Further: Getting Help and Troubleshooting

[310]

Delivering raster data
When it comes to raster data, Web Coverage Service (WCS) is the equivalent of WFS for
delivering the original data. Like vector data, raster data may be rendered in a proper way on
a map and you will get the result with WMS and a GetMap request. WCS is intended to get a
raster data set or its subset in its original form, without any rendering or other processing.

With WCS you don't have a standard format for data delivery; it depends on the original
format of your data.

The current release of GeoServer supports the 1.0.0 and 1.1.0 WCS versions.

As with WFS, you can find the full reference for WCS at the OGC repository,
http://www.opengeospatial.org/standards/is; look for:

 � OpenGIS Web Coverage Service (WCS) Implementation Specification

Time for action – retrieving raster data
We will use WCS to get raster data, using the sample data shipped with GeoServer. In case
you disabled it, as we did in Chapter 11, Tuning GeoServer in a Production Environment,
you will need to enable the WCS in GeoServer. Like WFS examples, we will use cUrl for
sending requests:

1. The first operation we will use is GetCapabilities. As with WFS, it returns a list of
available featuretype and operations:
~$ curl -XGET "http://localhost/geoserver/wcs?service=wcs&version=
1.0.0&request=GetCapabilities" -o getCapabilities.xml

2. The following lines show you the brief description for a coverage, extracted from the
list returned:
<wcs:CoverageOfferingBrief>
 <wcs:description>A very rough imagery of North America</
wcs:description>
 <wcs:name>nurc:Img_Sample</wcs:name>
 <wcs:label>North America sample imagery</wcs:label>
 <wcs:lonLatEnvelope srsName="urn:ogc:def:crs:OGC:1.3:CRS84">
 <gml:pos>-130.85168 20.7052</gml:pos>
 <gml:pos>-62.0054 54.1141</gml:pos>
 </wcs:lonLatEnvelope>
 <wcs:keywords>
 <wcs:keyword>WCS</wcs:keyword>
 <wcs:keyword>worldImageSample</wcs:keyword>
 <wcs:keyword>worldImageSample_Coverage</wcs:keyword>
 </wcs:keywords>
</wcs:CoverageOfferingBrief>

Chapter 12

[311]

3. The DescribeCoverage operation lets you get a full description of it:
~$ curl -XGET "http://localhost/geoserver/wcs?service=wcs&vers
ion=1.0.0&request=DescribeCoverage&Coverage=nurc:Img_Sample" -o
describeCoverage.xml

4. Inside the description, the returned code contains a list of the supported data
formats for the output:
<wcs:supportedFormats nativeFormat="WorldImage">
 <wcs:formats>GeoTIFF</wcs:formats>
 <wcs:formats>GIF</wcs:formats>
 <wcs:formats>PNG</wcs:formats>
 <wcs:formats>TIFF</wcs:formats>
</wcs:supportedFormats>

5. Now we will retrieve coverage. The GetCoverage operation retrieves it from
GeoServer. Unlike the GetFeatures operation in WFS, a few parameters are
mandatory. You have to specify the bounding box (bbox) and the width and
height parameters. The bbox operator defines the geometrical extent you want to
extract, while width and height define the image size:
~$ curl -XGET "http://localhost/geoserver/wcs?service=w
cs&version=1.0.0&request=GetCoverage&coverage=nurc:Img_
Sample&crs=EPSG:4326&bbox=-130.85168,20.7052,-62.0054,54.1141&widt
h=982&height=597&format=geotiff&bands=1" -o coverage.tiff

6. If you open the coverage.tiff file with a picture viewer, you will see that it
contains the same data as the original coverage:

Going Further: Getting Help and Troubleshooting

[312]

What just happened?
You learned the basics of retrieving raster data. If your project needs to process the raster
data on the client side, it is very important that they are not transformed by the map server,
as with WMS.

Getting help
Through this book you have learned a lot about web mapping and GeoServer, but being an
ultimate reference is far out of this book's scope.

When you are in trouble or simply curious about the new features, there are a lot of online
resources that can help you. The project site, http://geoserver.org, contains a lot of
information about GeoServer. Besides the basic features, you can find descriptions for the
community modules that are plugins developed by the contributors to address specific
requirements. Maybe you will find something really useful for you.

The project blog, http://blog.geoserver.org, announces new releases, ideas,
and contributions. Your RSS feed reader can't miss it!

There are two mailing lists, one user oriented and the other for developers that are
hosted on sourceforge.net. Information and links to the subscription point are at
http://geoserver.org/display/GEOS/Mailing+Lists.

On both, you can ask for information about the software in general and for specific issues.
Many core developers read both the lists and you can get an answer that can save you from
wasting your time. As with any other mailing list, following some rules may increase your
chances of getting a solution to your problem:

 � Be specific: If you write an e-mail stating GeoServer does not seem to work, you
can be sure that nobody will reply to you. You should describe a clear sequence to
replicate your issue, also giving details about your configuration.

 � Be polite: People on the lists are there to help you but are not at your service. Most
of the time they will do their best to find a solution for your issue, but sometimes
this can't be done. It could be that nobody knows how to solve your issue or it is too
complicated to be solved. If your issue requires a lot of coding, you can't expect
that someone will start working on it as soon as you post it on the lists.

 � Be collaborative: If you have got coding capabilities, you might try to build a patch
for the issue and submit it in the source code repository. It will be checked and
hopefully committed.

To report an issue you should use the issue tracker
http://jira.codehaus.org/browse/GEOS.

Chapter 12

[313]

You need to register. It is free and you only have to insert a valid e-mail address, and then
you can report a new issue. Browsing for current status is allowed for both registered and
anonymous users.

Have a go hero – GeoServer needs you!
We hope you liked GeoServer. It is a valuable piece of software and it comes to you with
no license cost, as with any open source project. Several developers, power users, and
companies work hard every day to make it a better and more capable product.

If you find it useful you may want to consider giving back some of what you received.

Join the mailing lists and try not only to learn, but also to give back what you learned.
GeoServer project is supported by all the people using it; so help to make it better.

Pop quiz - using WFS and WCS
Q1. How can you filter a feature in a WFS GetFeature request?

1. You can only limit the number of features returned with the maxFeatures parameter.

2. You can only filter the features returned by specifying an area of interest with the
bbox parameter.

3. You may specify an area of interest with the bbox parameter or build a filter on
attributes, both alphanumerical and geometrical, with the filter operations in the
request body.

Going Further: Getting Help and Troubleshooting

[314]

Q2. Can you resample raster data with WCS's GetCoverage request?
1. No, you can only get data at their native resolution.

2. Yes, but you can only select among the resolutions included in the
DescribeCoverage response.

3. Yes, using a proper combination of the bbox, width, and height values you can
obtain the desired resolution.

Summary
In this final chapter we gave a brief description of WFS and WCS—two different ways to
serve spatial data on the Web. But there's much more than this in the GeoServer project.

We can just mention the main features we didn't cover in the book, such as Web Processing
Service (WPS), which is a standard protocol for invoking the geospatial processing services,
CSS styling, which is an alternative way of simplifying SLD complexity to style your layers, and
time support for vector and raster data.

Whatever your needs in serving spatial data, GeoServer has an answer, or will have
it soon!

Pop Quiz Answers

Chapter 2, Getting Started with GeoServer

Pop quiz – setting up Java

Q1 3

Q2 3

Pop quiz – GeoServer security

Q1 2
Q2 2

Chapter 4, Accessing Layers
Pop quiz – accessing data

Q1 2
Q2 3

Pop Quiz Answers

[316]

Chapter 5, Adding your Data
Pop quiz – adding data to GeoServer

Q1 3
Q2 2

Pop quiz – adding data

Q1 3
Q2 1

Chapter 6, Styling your Layers
Pop quiz – SLD basic elements

Q1 1
Q2 2

Pop quiz – styling points

Q1 2
Q2 2

Pop quiz – styling lines and polygons

Q1 3
Q2 1
Q3 2

Appendix

[317]

Chapter 7, Creating Simple Maps
Pop quiz – creating mapping apps

Q1 2
Q2 3

Chapter 8, Performance and Caching
Pop quiz – configuring integrated GeoWebCache

Q1 2
Q2 1
Q3 3

Chapter 9, Automating Tasks: GeoServer REST Interface
Pop quiz – reviewing REST operations

Q1 3
Q2 2
Q3 3

Chapter 10, Securing GeoServer before Production
Pop quiz – reviewing security

Q1 2
Q2 3

Pop Quiz Answers

[318]

Chapter 11, Tuning GeoServer in a Production
Environment
Pop quiz – production environment

Q1 3
Q2 3

Chapter 12, Going Further: Getting Help and
Troubleshooting
Pop quiz – using WFS and WCS

Q1 3
Q2 3

Index
A
About & Status section

about 57, 60
configuration, loading manually 60, 61
contact information 59
GeoServer Logs 59
Server Status 57

additional data sources
exploring 122
MySQL 123
Oracle 122

Adobe Illustrator 95
Apache Tomcat

about 38
configuring, on Ubuntu 45, 46
GeoServer, deploying 49, 50
installing 38
installing, on Ubuntu 42-44
installing, on Windows 38-41
license agreement 42
URL 38
web interface, exploring 47

ArcGIS Online
URL 18

ArcGrid 73, 120
AtomPub format 92
Atom Publishing Protocol. See AtomPub

B
bbox 90
bug tracker

exploring 61

C
caching defaults

default cached gridsets 214
default layers options 213, 214
direct integration, enabling 212
setting 212
TMS 213
WMS-C 212
WTMS 213

choropleth maps 23
cluster

configuring 297-302
Cluster File System 296
configuration, GeoServer cluster 297-302
configuration, proxy 293, 294, 295
coordinates in decimal degree 10
coordinate systems

about 12
geographic coordinate systems 12
projected coordinate system 12
SRID 13
UTM 12
Web Mercator 13

CQL (Contextual Query Language) filters 91
CSV 73, 96
cURL

about 237
URL 237, 238

custom Google map layer
creating 193

custom gridset
creating 215-218

[320]

D
data

about 61
configuring 106
filtering 120
layer groups 69
Layer Preview 61
layers 68
stores 66
styles 69, 70
workspaces 64

data access
layers, securing 278-284
shapefile, creating 278

data publishing, REST interface
layers, working with 261
styles, working with 260

data, REST interface
managing 238
namespaces, working with 238
workspaces, managing 239-245
workspaces, working with 238

data security, GeoServer
group definition 272
roles, defining 276, 277
roles definition 272
user definition 272
user/group services 272
users and groups, creating 272-275

data stores, REST interface
managing 246-251

default cached gridsets 214
default layers options, caching defaults 213, 214
Demo requests interface

about 79
demo requests, exploring 80, 82
projection list, filtering 83, 84
SRS list 83

DescribeCoverage operation 311
digital elevation model (DEM) 120
direct integration 212
Disk Quota, GeoWebCache

configuring 209-211
DMZ 295

E
ellipsoid 10
emacs 128
EPSG Geodetic Parameter Registry 14
EPSG registry

about 14
exploring 14
URL 14

European Petroleum Survey Group. See EPSG
external GeoWebCache

using 231, 232
external WFS, vector data sources

configuring 107
external WMS, raster data sources

configuring 121

F
featuretype element 307
feature types, REST interface

about 252
PostGIS table, adding 256-259
shapefile, adding 254-256

Firebug 90
Firefox 90

G
GDAL output 99
geographic coordinate systems 12
Geography Markup Language (GML)

about 306
reference 306

geoid 10
GeoJSON

about 97
parsing 97

geometrical shapes
representing 14

GeoRSS
using, with OpenLayers 199

GeoRSS format 93
GeoServer 9

about 31, 32, 295
additional data sources 122

[321]

basic security, implementing 51, 52
bug tracker 61
data, configuring 105
data security 271
deploying, on Tomcat 49, 50
installation options 48
integrating, with OpenLayers 196-199
layers, styling 127
MySQL, adding 123
Oracle, adding 122
output options 98
proxy, configuring 293-295
raster data sources, configuring 120
REST 236
REST interface 236
sample maps, creating with Google Maps API

179
security settings 268
service faults, avoiding 295, 296
unused services, disabling 291, 292
URL 48, 312
vector data sources, configuring 106

GeoServer bundled styles
viewing 130-132

GeoServer cluster
configuring 297-302

GeoServer Demos
about 79
demo requests, exploring 80-83

GeoServer interface
about 55, 56
About & Status 57
data 61
Demos 79
global security settings 77
Security 76
services 70
settings 73
Tile Caching 76

GeoServer Logs 59
GeoTIFF 67, 120
GeoWebCache

about 55
caching defaults, setting 212
Disk Quota, configuring 209-211
exploring 206

external GeoWebCache, using 231
gridsets, configuring 215
storage, configuring 206-209
tile layers, configuring 218
URL 206

GetFeatureInfo freemarker template
using 99, 100

GetFeature operation 307
GetFeature request 291
GetMap request 288, 290
GIF format 92
GIS

about 7, 8
coordinate systems 12
geometrical shapes 14
raster data 16

GIS software 9
GitHub project 192
GlassFish 38
global security settings, GeoServer interface 77
global settings, GeoServer interface

about 73
enable Global Services 74
logging configuration, changing 74
logging level, creating 75
logging Profile 74
Log location 74
Log to StdOut 74
Proxy Base URL 74
Verbose reporting 73

GML2 (compressed GZIP) 97
GML3 73
gml:coordinates element 308
GML (plain text) 96
Google 13
Google basemap

customizing 189
Google Earth 26
Google Maps 13
Google Maps API

about 180
click event, intercepting 193, 194
GeoServer layer, adding as base layer 185-187
GeoServer layer, adding as overlay 180-184
pre-calculated maps, using 187-189
user, interacting 193

[322]

Graphics Interchange Format. See GIF
gridsets

about 215
configuring 215
custom gridset, creating 215-218

group definition 272
Gtopo30 121

H
httpd 292

I
ImageMap 101
ImageMosaic 121
Inkscape

about 95
URL 95

installation
Apache Tomcat 38
GeoServer 48
Java 32

installation, native JAI 288-290
interface settings, GeoServer

about 73
global 73
JAI 75

issue tracker
URL 312

J
JAI 58, 75, 288
JAI-IO package 289
Java

runtime parameters, configuring 286-288
tuning 286

Java Advanced Imaging. See JAI
Java installation

about 32
JRE, installing on Ubuntu 36, 38
JRE, installing on Windows 35
JRE/JDK installation, checking on Ubuntu 34
 JRE/JDK installation, checking on Windows 32,

33
Java Naming and Directory Interface (JNDI) 67
Java Virtual Machine (JVM) 58

Java Runtime Environment. See JRE
JBoss 38
JDK (Java Development Kit) 32
Jetty 292
JPEG format 94
JRE

about 32
installing, on Ubuntu 36, 38
installing, on Windows 35

JRE (Java Runtime Environment) 32
JRE/JDK installation

cheking, on Ubuntu 34
cheking, on Windows 32, 33

JSON 73
JVM

runtime parameters, optimizing for 286-288

K
KML (Plain) format 94
KML preview 63, 64
KMZ (Compressed) format 94

L
labels

adding 160
lines, labeling 163-165
points, labeling 161, 162
polygons, labeling 166, 167
styling 166

latitude 9
layer groups 69
Layer Preview

about 61
KML preview 63, 64
OpenLayers preview 62, 63

layers
about 68
grouping 176, 177
styling 176

layers, REST interface
managing 262, 263

LeafLet
about 88
exploring 201
URL 88
using, with GeoServer layers 201, 202

[323]

lineString element 308
linestring symbols

about 146
border, adding 148
centerline, adding 148
dashed lines, using 151, 152
dashing lines and markers, mixing 153, 154
hatching, using 149, 150
simple line style, creating 146, 147

longitude 9

M
map

building 17, 18
colors and shading 19
symbols 18

memory usage 58
MySQL

about 123
adding, in GeoServer 124
URL 107

N
namespace URI, REST interface 238
native JAI

installing 288-290
notepad++ 128

O
OGR output 99
online resources, GeoServer 312
Open Geospatial Consortium (OGC)

about 16
URL 16

OpenJDK 32
OpenLayers

about 88
filtering 91
GeoRSS, using with 199, 200
integrating, with GeoServer 196-199
options, exploring 89, 90
tiles, working with 90, 91
using 196

OpenLayers preview 62, 63
Open Source Geospatial Foundation (OSGeo) 88

OpenStreetMap
about 20
URL 20
using 21, 22

Oracle
about 122
adding, in GeoServer 122, 123

Oracle Java™ JRE 32
Oracle Locator 122
Oracle Spatial 122
Out Of Memory (OOM) 287
output options, GeoServer

GDAL 99
OGR 99
TEXT/HTML 99

P
Parallel Garbage Collector 287
PDF format 95
pdf Reflect option, WMS Reflector

exploring 103
PgAdmin 120
PNG format 95
PointSymbolizer 101
point symbols

angles and transparency, dealing with 140
composing 146
external graphics, using 144, 145
simple point style, creating 134-137
simple shapes, composing 141-143
stroke value, adding 137-139
working with 134

polygon symbols
graphic filling, using 157
hatching, using 158-160
simple polygon style, creating 155, 156
working with 155

polyline 15
PostGIS

about 110
data, loading 116-118
data, publishing in GeoServer 119
installing 110, 114, 115

PostgreSQL
installing 110-113

[324]

pre-calculated maps, Google Maps API
custom Google map layer, creating 193
GeoServer cached layer, adding as overlay 187-

189
Google basemap, customizing 189-192
using 187

Processing Service (WPS) 314
project blog

URL 312
projected coordinate system 12
projection

about 10
classifying 11

properties file, vector data sources
configuring 106

proportional maps 25
proxy

configuring 293-295
setting 292

Python
URL 237

Q
QGIS 128

URL 128

R
raster data

about 14
delivering 310
drawbacks 17
retrieving 310-312
used, for modeling real world 16

raster data sources
about 120
ArcGrid 120
configuring 120
external WMS, configuring 121
GeoTiff 120
Gtopo30 121
ImageMosaic 121
WorldImage 121

raster formats 67
RDBMS 296
real world

modeling, raster data used 16

Reflector 87
REpresentational State Transfer. See REST
Requests library

installing 237, 238
Resource Cache 59
REST

about 236
Requests library, installing 237, 238
using 236, 237

REST interface, GeoServer
data, managing 238
data, publishing 260

roles definition 272
root account 270
rules, mailing list 312
runtime parameter

optimizing, for JVM 286-288

S
sample maps, building

Google Maps API, exploring 180
Leaflet, exploring 201
OpenLayers, using 196

security, GeoServer
data access 277
implementing 51, 52
security settings, improving 52

security settings, GeoServer interface
about 268
catalog security 78
data 78
groups 77
master password, changing 270, 271
roles 77
services security 79
strong encryption, enabling 269, 270
users 77

seeding 227
Server Status

about 57
configuration and catalog 59
connections 58
JAI 58
JVM 58
locks 58
memory usage 58

[325]

resource cache 59
update sequence 58

service faults
avoiding 295, 296

services
about 70
WCS 73
WFS 73
WMS 71

Shapefile 73, 98
spatial data

about 8
sphere, projecting on plane 10, 11
world, measuring 9

spatial reference system. See SRS
spatial reference system identifier. See SRID
sphere

projecting, on sphere 10
SRID 13
SRS 13
SRS list

filtering 83, 84
standard structure, style

exploring 129
GeoServer bundled styles, viewing 130-132

storage, GeoWebCache
configuring 206-209

stores
about 66
data formats 67

Styled Layer Descriptor (SLD)
about 29, 127, 128
URL 128

styles
about 69
data, loading 133
editing 128
standard structure, exploring 129

styles, REST interface
adding 260, 261
managing 260

SVG format 95

T
TEXT/HTML 99
thematic mapping

about 168

choropleth road map 172
roads, classifying 169, 171

thematic maps
about 23
building 26-28
choropleth maps 23
proportional maps 25

TIFF format 95
tile caching 76
tile layers

client, building for tiger county layer 227
configuring 218, 219
configuring, for caching 219, 220
seeding 227-230
using, with OpenLayers 221-227

tiles, OpenLayers
working with 90

TMS (Tiled Map Services) 213
Tomcat. See Apache Tomcat 286
Tomcat web interface

exploring 47
Transactional Web Feature Service (WFS-T) 58
Transverse Mercator projection 12

U
Ubuntu

Apache Tomcat 7.x, installing 42-44
downloading 36
JRE, installing 36-38
JRE/JDK installation, checking 34
Tomcat, configuring 45, 46

United States Geological Survey (USGS) 121
Universal Transverse Mercator system. See UTM

system
unused services

disabling 291, 292
user definition 272
user/group services 272
UTM system 12

V
vector data

about 14
delivering 306
retrieving 306-309

[326]

vector data formats
about 67
PostGIS 67
properties 67
shapefile 67
WFS 67

vector data sources
about 106
configuring 106
external WFS, configuring 107
PostGIS, using 110
properties file, adding 106
shapefiles, adding 107=109

vector data store connections 58
vi 128
visibility, setting

about 173
thematic roads map, enhancing 173-175

W
WCS

about 58, 291, 310
reference 310
using 310

Web Coverage Service. See WCS
Web Feature Server 73
Web Feature Service. See WFS
Web Mapping Service. See WMS
Web Mapping Services Cached. See WMS-C
Web Map Server 71
Web Map Service 58
Web Mercator 13
well-known text (WKT) representation 13
WFS

about 73, 88, 96, 291
reference 306
using 306

WFS output formats
CSV 96
GeoJSON 97
GML2 (compressed GZIP) 97
GML (plain text) 96
Shapefile 98

WFS-T 291

Windows
Apache Tomcat 7.x, installing 38-41
JRE, installing 35
JRE/JDK installation, checking 32, 33

WMS
about 71, 291
SRS list, limiting 71, 72

WMS-C 212
WMS output formats

AtomPub 92
exploring 92
GeoRSS 93
GIF 92
JPEG 94
KML (Plain) 94
KMZ (Compressed) 94
PDF 95
PNG 95
SVG 95
TIFF 95

WMS Reflector
pdf Reflect option, exploring 103
using 101, 102

WMTS (Web Map Tiled Services) 213
workspace, REST interface

about 238
managing 239-245

workspaces
about 64
creating 65, 66

world
measuring 9
representing 17

WorldImage 67, 121

Thank you for buying

GeoServer Beginner’s Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're
using to get the job done. Packt books are more specific and less general than the IT books
you have seen in the past. Our unique business model allows us to bring you more focused
information, giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licences, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get
some additional reward for your expertise.

OpenLayers 2.10 Beginner's Guide
ISBN: 978-1-84951-412-5 Paperback: 372 pages

Create, optimize, and deploy stunning cross-browser
web maps with the OpenLayers JavaScript web-
mapping library

1. Learn how to use OpenLayers through explanation
and example

2. Create dynamic web map mashups using Google
Maps and other third-party APIs

3. Customize your map's functionality and appearance

4. Deploy your maps and improve page loading times

Python Geospatial Development
ISBN: 978-1-84951-154-4 Paperback: 508 pages

Build a complete and sophisticated mapping
application from scratch using Python tools for
GIS development

1. Build applications for GIS development using Python

2. Analyze and visualize Geo-Spatial data

3. Comprehensive coverage of key GIS concepts

4. Recommended best practices for storing spatial
data in a database

5. Draw maps, place data points onto a map, and
interact with maps

Please check www.PacktPub.com for information on our titles

Java 7 New Features Cookbook
ISBN: 978-1-84968-562-7 Paperback: 384 pages

Over 100 comprehensive recipes to get you
up-to-speed with all the exciting new features
of Java 7

1. Comprehensive coverage of the new features of
Java 7 organized around easy-to-follow recipes

2. Covers exciting features such as the try-with-
resources block, the monitoring of directory events,
asynchronous IO and new GUI enhancements,
and more

3. A learn-by-example based approach that focuses on
key concepts to provide the foundation to solve real
world problems

JBoss AS 5 Development
ISBN: 978-1-84719-682-8 Paperback: 416 pages

Develop, deploy, and secure Java applications on this
robust, open source application server

1. A complete guide for JBoss developers covering
everything from basic installation to creating,
debugging, and securing Java EE applications on this
popular, award-winning JBoss application server

2. Master the most important areas of Java Enterprise
programming including EJB 3.0, web services, the
security framework, and more

3. Starts with the basics of JBoss AS and moves on to
cover important advanced topics with the help of
easy-to-understand practical examples

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: GIS Fundamentals
	What is GIS about?
	The foundation of any GIS – spatial data
	Measuring the world
	Projecting a sphere on a plane

	Understanding coordinate systems
	Commonly used coordinate systems
	Universal Transverse Mercator system
	Web Mercator

	Spatial Reference Identifier (SRID)

	Representing geometrical shapes
	Modeling the real world with raster data
	Representing the world
	Time for action – explore OpenStreetMap
	Adding more colors to your maps
	Choropleth maps
	Proportional maps

	Time for action – make your thematic map
	Summary

	Chapter 2: Getting Started with GeoServer
	Installing Java
	Time for action – checking the presence of Java on Windows
	Time for action – checking the presence of Java on Ubuntu
	Time for action – installing JRE on Windows
	Time for action – installing JRE on Ubuntu
	Installing Apache Tomcat
	Time for action – installing Apache Tomcat on Windows
	Time for action – installing Apache Tomcat on Ubuntu
	Time for action – configuring Tomcat as a service on Ubuntu
	Installing GeoServer
	Time for action – deploying GeoServer on Tomcat
	Implementing basic security
	Time for action – improving security settings
	Summary

	Chapter 3: Exploring the Administrative Interface
	Understanding the interface
	About & Status
	Server Status
	Locks
	Connections
	Memory Usage
	JVM Version and fonts
	JAI usage and configurations
	Update Sequence
	Resource Cache
	Configuration and catalog

	GeoServer Logs
	Contact Information
	About

	Time for action – manually reloading configuration
	Data
	Layer Preview

	Time for action – OpenLayers preview
	Time for action – KML preview
	Workspaces

	Time for action – creating a workspace
	Stores
	Layers
	Layer groups
	Styles

	Services
	WMS

	Time for action – limiting the SRS list from WMS
	WFS
	WCS

	Settings
	Global
	Verbose Reporting
	Enable Global Services
	Proxy Base URL
	Logging Profile
	Log to StdOut
	Log location

	Time for action – changing your logging configuration
	JAI

	Tile Caching
	Security
	Settings
	Users, Groups, and Roles
	Data
	Catalog security

	Services security

	Demos
	Time for action – exploring Demo requests
	SRS List

	Time for action – filtering the projection list
	Summary

	Chapter 4: Accessing Layers
	Layer types
	OpenLayers
	Time for action – exploring OpenLayers options
	Working with tiles

	Exploring the Web Map Service output formats
	AtomPub
	GIF
	GeoRSS
	JPEG
	KML (Plain)
	KMZ (Compressed)
	PDF
	PNG
	SVG
	TIFF

	Web Feature Service
	CSV
	GML (plain text)
	GML2 (compressed GZIP)
	GeoJSON

	Time for action – parsing GeoJSON
	Shapefile

	Extra output options
	GDAL and OGR output
	TEXT/HTML

	Time for action – using the GetFeatureInfo freemarker template
	Using WMS Reflector
	Time for action – using WMS Reflector
	Summary

	Chapter 5: Adding Your Data
	Configuring your data
	Configuring vector data sources
	Adding a properties file
	Configuring an external Web Feature Service
	Adding shapefiles

	Time for action – adding shapefiles
	Using PostGIS

	Time for action – installing PostgreSQL and PostGIS
	Time for action – loading data in PostGIS and publishing them in GeoServer
	Configuring raster data sources
	ArcGrid
	GeoTiff
	Gtopo30
	ImageMosaic
	WorldImage
	Configuring an external Web Map Service

	Exploring additional data sources
	Using Oracle

	Time for action – adding Oracle support in GeoServer
	Using MySQL

	Time for action – adding MySQL data source
	Summary

	Chapter 6: Styling Your Layers
	Understanding Styled Layer Descriptor
	Editing styles
	Exploring the standard structure of a style
	Time for action – viewing GeoServer bundled styles
	Loading data for styling
	Working with point symbols
	Time for action – creating a simple point style
	Time for action – adding a stroke value
	Time for action – dealing with angles and transparency
	Time for action – composing simple shapes
	Time for action – using external graphics
	Linestring symbols
	Time for action – creating a simple line style
	Time for action – adding a border and a centerline
	Time for action – using hatching
	Time for action – using dashed lines
	Time for action – mixing dashing lines and markers
	Working with polygon symbols
	Time for action – creating a simple polygon style
	Time for action – using a graphic filling
	Time for action – using hatching with polygons
	Adding labels
	Time for action – labeling points
	Time for action – labeling lines
	Time for action – labeling polygons
	Thematic mapping
	Time for action – classifying roads
	Setting visibility
	Time for action – enhancing thematic roads map
	Putting it all together
	Time for action – grouping layers
	Summary

	Chapter 7: Creating Simple Maps
	Exploring Google Maps API
	Time for action – adding a GeoServer's layer as overlay
	Time for action – adding a GeoServer's layer as a base layer
	Using pre-calculated maps

	Time for action – adding a GeoServer cached layer as overlay
	Time for action – customizing Google basemap
	Interacting with the user

	Time for action – intercepting the Click event
	Using OpenLayers
	Time for action – integrating GeoServer and OpenLayers
	Time for action – using GeoRSS with OpenLayers
	Exploring Leaflet
	Time for action – using Leaflet with GeoServer layers
	Summary

	Chapter 8: Performance and Caching
	Exploring GeoWebCache
	Time for action – configuring GeoWebCache storage
	Time for action – configuring Disk Quota
	Setting caching defaults
	Direct integration
	WMS-C
	TMS and WMTS
	Default layers options
	Default Cached Gridsets

	Configuring gridsets
	Time for action – creating a custom gridset
	Configuring tile layers
	Time for action – configuring layers and layer groups for caching
	Time for action – using tiles with OpenLayers
	Time for action – seeding a layer
	Using an external GeoWebCache
	Summary

	Chapter 9: Automating Tasks: GeoServer REST Interface
	Introducing REST
	Using REST
	Time for action – installing the Requests library
	Managing data
	Working with workspaces and namespaces

	Time for action – managing workspaces
	Using data stores

	Time for action – managing data stores
	Using feature types

	Time for action – adding a new shapefile
	Time for action – adding a PostGIS table
	Publishing data
	Working with styles

	Time for action – adding a new style
	Working with layers

	Time for action – managing layers
	Summary

	Chapter 10: Securing GeoServer Before Production
	Basic security settings
	Time for action – enabling strong encryption
	Time for action – changing the master password
	Defining users, groups, and roles
	User definition
	Group definition
	User/group services
	Roles definition

	Time for action – creating users and groups
	Time for action – defining roles
	Accessing data and services
	Time for action – securing layers
	Summary

	Chapter 11: Tuning GeoServer in a Production Environment
	Tuning Java
	Time for action – configuring Java runtime parameters
	Time for action – installing native JAI
	Removing unused services
	Time for action – disabling unused services
	Setting a proxy
	Time for action – configuring a proxy
	Avoiding service faults
	Time for action – configuring a cluster
	Summary

	Chapter 12: Going Further: Getting Help and Troubleshooting
	Going beyond maps
	Delivering vector data

	Time for action – retrieving vector data
	Delivering raster data

	Time for action – retrieving vector data
	Getting help
	Summary

	Appendix: Pop Quiz Answers
	Index

